苏教版选修1-1如东马塘中学《圆锥曲线》全章教案

文档属性

名称 苏教版选修1-1如东马塘中学《圆锥曲线》全章教案
格式 rar
文件大小 407.1KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2008-11-29 16:50:00

文档简介

课 题:椭圆及其标准方程
教学目的:
1、理解椭圆的定义 明确焦点、焦距的概念
2、熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程
3、能由椭圆定义推导椭圆的方程
4、启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力
教学重点:椭圆的定义和标准方程
教学难点:椭圆标准方程的推导
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、新知引入:
1.1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长
(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题)
2.复习求轨迹方程的基本步骤:
3.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在
画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉
近,使笔尖在图板上慢慢移动,就可以画出一个椭圆
分析:(1)轨迹上的点是怎么来的?
(2)在这个运动过程中,什么是不变的?
答:两个定点,绳长
即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变)
二、讲解新课:
1、椭圆定义:
平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
注意:椭圆定义中容易遗漏的两处地方:
(1)两个定点---两点间距离确定
(2)绳长--轨迹上任意点到两定点距离和确定
思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)
在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(圆)
由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)
2、根据定义推导椭圆标准方程:
取过焦点的直线为轴,线段的垂直平分线为轴
设为椭圆上的任意一点,椭圆的焦距是().
则,又设M与距离之和等于()(常数)


化简,得 ,
由定义,
令代入,得 ,
两边同除得
此即为椭圆的标准方程
它所表示的椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆方程 其中
注意若坐标系的选取不同,可得到椭圆的不同的方程
如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,只要将方程中的调换,即可得
,也是椭圆的标准方程
理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在与这两个标准方程中,都有的要求,如方程就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式类比,如中,由于,所以在轴上的“截距”更大,因而焦点在轴上(即看分母的大小)
三、讲解范例:
例 写出适合下列条件的椭圆的标准方程:
两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离
之和等于10;
解:(1)因为椭圆的焦点在轴上,所以设它的标准方程为
    
所以所求椭圆标准方程为
点评:题(1)根据定义求 若将焦点改为(0,-4)、(0,4)其结果如何;
四、课堂练习:
1、椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为…………………………………………………………………【 】
?A.5 ?B.6 ?C.4 ?D.10
2.椭圆的焦点坐标是………………………………………【 】
?A.(±5,0)? B.(0,±5) ?C.(0,±12)? D.(±12,0)
3. ,焦点在一轴上的椭圆的标准方程是
五、小结 :本节课学习了椭圆的定义及标准方程,应注意以下几点:
①椭圆的定义中, ;
②椭圆的标准方程中,焦点的位置看,的分母大小来确定;
③、、的几何意义
六、课后作业:
1.判断下列方程是否表上椭圆,若是,求出的值
①;②;③;④
2 椭圆的焦距是 ,焦点坐标为 ;若CD为过左焦点的弦,则的周长为
七、板书设计(略)
八、课后记:
写出适合下列条件的椭圆的标准方程:(口答)
(1) a=4,b=3,焦点在x轴;
(2) a=5,c=2,焦点在y轴上.
学会学习,学会思考课题:抛物线的几何性质(1)
【教学目的】:
1、掌握抛物线中的定义和标准方程及其推导过程,理解抛物线中的基本量;
2、能够熟练画出抛物线的草图,进一步提高学生“应用数学”的水平;
【教学重点】:抛物线的标准方程
【教学难点】:抛物线标准方程的不同形式
【授课类型】:新授课
【课时安排】:1课时
【教 具】:多媒体、实物投影仪
【教学过程】:
一、复习引入:
1、回顾椭圆和双曲线的定义
2、生活中抛物线的引例:
3、把一根直尺固定在图板上直线L位置,把一块三角板的一条直角边紧靠着真心直尺的边缘,再把一条细绳的一端固定在三角板的另一条直角边的一点A,取绳长等于点A到直角标顶点C的长(即点A到直线L的距离),并且把绳子的另一端固定在图板上的一点F 用铅笔尖扣着绳子,使点A到笔尖的一段绳子紧靠着三角板,然后将三角板沿着直尺上下滑动,笔尖就在图板上描出了一条曲线
二、讲解新课:
1、 抛物线定义:
平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线 定点叫做抛物线的焦点,定直线叫做抛物线的准线
注: (1)定点不在这条定直线;
(1)定点在这条定直线,则点的轨迹是什么?
2、推导抛物线的标准方程:
如图所示,建立直角坐标系,设(),
那么焦点的坐标为,准线的方程为,
设抛物线上的点,则有
化简方程得
方程叫做抛物线的标准方程
(1)它表示的抛物线的焦点在轴的正半轴上,焦点坐标是,
它的准线方程是
(2)一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下
3、抛物线的准线方程:如图所示,分别建立直角坐标系,设出(),则抛物线的标准方程如下:
(1), 焦点:,准线:
(2), 焦点:,准线:
(3), 焦点:,准线:
(4) , 焦点:,准线:
相同点:(1)抛物线都过原点;
(2)对称轴为坐标轴;
(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称; 它们到原点的距离都等于一次项系数绝对值的,即;
不同点:(1)图形关于轴对称时,为一次项,为二次项,
方程右端为、左端为;
图形关于轴对称时,为二次项,为一次项,
方程右端为,左端为
(2)开口方向在轴(或轴)正向时,焦点在轴(或轴)的正半轴上,方程右端取正号;
开口在轴(或轴)负向时,焦点在轴(或轴)负半轴时,方程右端取负号
三、讲解范例:
例1 (1)已知抛物线标准方程是,求它的焦点坐标和准线方程
  (2)已知抛物线的焦点坐标是(0,-2),求它的标准方程
分析:(1)在标准方程下焦点坐标和准线方程都是用的代数式表示的,所以只要求出即可;
  (2)求的是标准方程,因此所指抛物线应过原点,结合焦点坐标求出,问题易解。
解析:(1),焦点坐标是(,0)准线方程是.
(2)焦点在轴负半轴上,=2,
所以所求抛物线的标准议程是.
例2 求满足下列条件的抛物线的标准方程:
(1)焦点坐标是F(-5,0)
(2)经过点A(2,-3)
分析:抛物线的标准方程中只有一个参数p,因此,只要确定了抛物线属于哪类标准形式,再求出p值就可以写出其方程,但要注意两解的情况
解:(1)焦点在x轴负半轴上,=5,
所以所求抛物线的标准议程是.
(2)经过点A(2,-3)的抛物线可能有两种标准形式:y2=2px或x2=-2py.
点A(2,-3)坐标代入,即9=4p,得2p=
点A(2,-3)坐标代入x2=-2py,即4=6p,得2p=
∴所求抛物线的标准方程是或x2=-y
例2 已知抛物线的标准方程是(1),(2),
求它的焦点坐标和准线方程.
分析:这是关于抛物线标准方程的基本例题,关键是(1)根据示意图确定属于哪类标准形式,(2)求出参数的值.
解:(1),焦点坐标是(3,0)准线方程
(2)先化为标准方程,,焦点坐标是(0,),
准线方程是.
四、课堂练习:
1.求下列抛物线的焦点坐标和准线方程
(1)y2=8x (2)x2=4y (3)2y2+3x=0 (4)
2.根据下列条件写出抛物线的标准方程
(1)焦点是F(-2,0)
(2)准线方程是
(3)焦点到准线的距离是4,焦点在y轴上
(4)经过点A(6,-2)
3.抛物线x2=4y上的点p到焦点的距离是10,求p点坐标
点评:练习时注意(1)由焦点位置或准线方程正确判断抛物线标准方程的类型;(2)p表示焦点到准线的距离故p>0; (3)根据图形判断解有几种可能
五、小结 :小结抛物线的定义、焦点、准线及其方程的概念;
六、课后作业:
七、板书设计(略)
学会学习,学会思考课题:椭圆的标准方程(2)
教学目的:
1.能正确运用椭圆的定义与标准方程解题;
2.学会用待定系数法与定义法求曲线的方程
教学重点:用待定系数法与定义法求曲线的方程
教学难点:待定系数法
授课类型:新授课
教学过程:
一.复习回顾
椭圆定义:平面内到两个定点F1、F2的距离的和等于常数2a(大于F1F2)的点的轨迹叫做椭圆,两个定点F1、F2叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
思考:(1)2a= F1F2,则轨迹是什么? (线段F1F2)
(2)2a< F1F2, 则轨迹是什么? (无轨迹)
椭圆的标准方程:
标准方程
不同点 图形
焦点坐标
相同点 定 义 平面内到两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹
a、b、c的关系
焦点位置的判断 分母哪个大,焦点就在哪个轴上
注:①是;
②是(要区别与习惯思维下的勾股定理);
③是定方程“型”与曲线“形”.
二.例题讲解
例1: 求适合下列条件的椭圆的标准方程:
(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).
(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P到两焦点的距离和为26.
(3)焦点在轴上,且经过点(2,0)和点(0,1).
(4)焦点在轴上,与轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.
(5)求与椭圆有相同焦点,且过点.
例2: 已知三角形ABC的一边 BC 长为6,周长为16,求顶点A的轨迹方程
变式1:已知B(-3,0),C(3,0),CA,BC,AB的长组成一个等差数列,求点A的轨迹方程。
变式2:在△ABC中, B(-3,0),C(3,0), ,求A点的轨迹
例3:(1)方程是否可以表示椭圆 若能表示椭圆,则需要满足的条件是什么
(2)若方程表示椭圆,求k的取值范围.
小结:
(1)椭圆的定义及标准方程;
(2)椭圆的标准方程有两个;标准方程中的关系;
(3)掌握判断焦点的方法;
在一定的条件之下可以表示椭圆,有时利于解题;
如何来求椭圆方程?
(4)用定义法求椭圆的方程
PAGE
2
学会学习,学会思考课 题:双曲线及其标准方程(二)
教学目标
1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用;
2.使学生初步会按特定条件求双曲线的标准方程;
3.培养学生发散思维的能力
教学重点:标准方程及其简单应用
教学难点:双曲线标准方程的推导及待定系数法解二元二次方程组
教学过程:
一、复习引入:
二、讲解范例
例1判断方程所表示的曲线。
例2 已知的底边BC长为12,且底边固定,顶点A是动点,使,求点A的轨迹
例3点A位于双曲线上,是它的两个焦点,求的重心G的轨迹方程
例4.求与圆及都外切的动圆圆心的轨迹方程
课堂练习
1. 求焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2)的双曲线的标准方程。
2求经过点和,焦点在y轴上的双曲线的标准方程
3. 椭圆和双曲线有相同的焦点,则实数的值是
4.已知是双曲线的焦点,PQ是过焦点的弦,且PQ的倾斜角为600,那么的值为
PAGE
2
学会学习,学会思考课题:抛物线的标准方程(2课时)
【教学目的】:
1、掌握抛物线中的定义和标准方程及其推导过程,理解抛物线中的基本量;
2、能够熟练画出抛物线的草图,进一步提高学生“应用数学”的水平;
【教学重点】:抛物线的标准方程
【教学难点】:抛物线标准方程的不同形式
【授课类型】:新授课
【课时安排】:1课时
【教 具】:多媒体、实物投影仪
【教学过程】:
一、复习引入:
1、回顾椭圆和双曲线的定义
2、生活中抛物线的引例:
3、把一根直尺固定在图板上直线L位置,把一块三角板的一条直角边紧靠着真心直尺的边缘,再把一条细绳的一端固定在三角板的另一条直角边的一点A,取绳长等于点A到直角标顶点C的长(即点A到直线L的距离),并且把绳子的另一端固定在图板上的一点F 用铅笔尖扣着绳子,使点A到笔尖的一段绳子紧靠着三角板,然后将三角板沿着直尺上下滑动,笔尖就在图板上描出了一条曲线
二、讲解新课:
1、 抛物线定义:
平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线 定点叫做抛物线的焦点,定直线叫做抛物线的准线
注: (1)定点不在这条定直线;
(1)定点在这条定直线,则点的轨迹是什么?
2、推导抛物线的标准方程:
如图所示,建立直角坐标系,设(),
那么焦点的坐标为,准线的方程为,
设抛物线上的点,则有
化简方程得
方程叫做抛物线的标准方程
(1)它表示的抛物线的焦点在轴的正半轴上,焦点坐标是,
它的准线方程是
(2)一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下
3、抛物线的准线方程:如图所示,分别建立直角坐标系,设出(),则抛物线的标准方程如下:
(1), 焦点:,准线:
(2), 焦点:,准线:
(3), 焦点:,准线:
(4) , 焦点:,准线:
相同点:(1)抛物线都过原点;
(2)对称轴为坐标轴;
(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称; 它们到原点的距离都等于一次项系数绝对值的,即;
不同点:(1)图形关于轴对称时,为一次项,为二次项,
方程右端为、左端为;
图形关于轴对称时,为二次项,为一次项,
方程右端为,左端为
(2)开口方向在轴(或轴)正向时,焦点在轴(或轴)的正半轴上,方程右端取正号;
开口在轴(或轴)负向时,焦点在轴(或轴)负半轴时,方程右端取负号
三、讲解范例:
例1 (1)已知抛物线标准方程是,求它的焦点坐标和准线方程
  (2)已知抛物线的焦点坐标是(0,-2),求它的标准方程
分析:(1)在标准方程下焦点坐标和准线方程都是用的代数式表示的,所以只要求出即可;
  (2)求的是标准方程,因此所指抛物线应过原点,结合焦点坐标求出,问题易解。
解析:(1),焦点坐标是(,0)准线方程是.
(2)焦点在轴负半轴上,=2,
所以所求抛物线的标准议程是.
例2 求满足下列条件的抛物线的标准方程:
(1)焦点坐标是F(-5,0)
(2)经过点A(2,-3)
分析:抛物线的标准方程中只有一个参数p,因此,只要确定了抛物线属于哪类标准形式,再求出p值就可以写出其方程,但要注意两解的情况
解:(1)焦点在x轴负半轴上,=5,
所以所求抛物线的标准议程是.
(2)经过点A(2,-3)的抛物线可能有两种标准形式:y2=2px或x2=-2py.
点A(2,-3)坐标代入,即9=4p,得2p=
点A(2,-3)坐标代入x2=-2py,即4=6p,得2p=
∴所求抛物线的标准方程是或x2=-y
例2 已知抛物线的标准方程是(1),(2),
求它的焦点坐标和准线方程.
分析:这是关于抛物线标准方程的基本例题,关键是(1)根据示意图确定属于哪类标准形式,(2)求出参数的值.
解:(1),焦点坐标是(3,0)准线方程
(2)先化为标准方程,,焦点坐标是(0,),
准线方程是.
四、课堂练习:
1.求下列抛物线的焦点坐标和准线方程
(1)y2=8x (2)x2=4y (3)2y2+3x=0 (4)
2.根据下列条件写出抛物线的标准方程
(1)焦点是F(-2,0)
(2)准线方程是
(3)焦点到准线的距离是4,焦点在y轴上
(4)经过点A(6,-2)
3.抛物线x2=4y上的点p到焦点的距离是10,求p点坐标
点评:练习时注意(1)由焦点位置或准线方程正确判断抛物线标准方程的类型;(2)p表示焦点到准线的距离故p>0; (3)根据图形判断解有几种可能
五、小结 :小结抛物线的定义、焦点、准线及其方程的概念;
六、课后作业:
七、板书设计(略)
PAGE
3
学会学习,学会思考课题:抛物线的几何性质(3)
【教学目标】: 1、掌握抛物线的定义、标准方程和几何性质;
2、培养学生分析问题、解决问题的能力;
【教学重点】:抛物线的性质及简单应用;
【教学难点】:抛物线的性质及简单应用;
【教学过程】:
一、小题训练
1、若直线y=kx+1与抛物线y2=x仅有一个公共点,则k的值为 ( )
A. B. 0或 C.0或- D. 或-
2、抛物线y2=4x关于直线x+y=0对称的抛物线方程是 ( )
A.x2=4y B.y2=-4x C.y=4x2 D.x2=-4y
3、动点M以每秒2长度单位的速度沿直线l:y=x-2移动,则M穿过抛物线y2=4x的内部需要的时间是
4、抛物线y2=2x中被点A(1,1)平分的弦所在的直线的方程是
二、例题选讲
例1、设抛物线y2=4x截直线y=2x+m所得弦AB的长为3,
(1)求m的值.
(2)以弦AB为底边,x轴上的P为顶点组成的三角形面积为39时,求P点坐标;
例2、过抛物线的顶点作两条互相垂直的弦OA,OB,
证明:AB与抛物线的对称轴交于定点。
例3、过抛物线y2=x上一点A(4,2)作倾斜角互补的两条直线AB、AC,它们交抛物线于B、C两点,求直线BC的斜率
例4、已知正方形ABCD的顶点A、B在抛物线y2=x上,C、D在直线y=x+4上,求正方形的边长。
学会学习,学会思考课题:2.3.1双曲线的标准方程
【教学目标】:
1.知识与技能
掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程.
2.过程与方法
教材通过具体实例类比椭圆的定义,引出双曲线的定义,通过类比推导出双曲线的标准方程.
3.情感、态度与价值观
通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力.
【教学重点】: 双曲线的定义、标准方程及其简单应用
【教学难点】: 双曲线标准方程的推导
【授课类型】:新授课
【课时安排】:1课时
【教 具】:多媒体、实物投影仪
【教学过程】:
一.情境设置
(1)复习提问:
(由一位学生口答,教师利用多媒体投影)
问题 1:椭圆的定义是什么?
问题 2:椭圆的标准方程是怎样的?
问题3:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢?
(2)探究新知:
(1)演示:引导学生用《几何画板》作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。
(2)设问:①|MF1|与|MF2|哪个大?
②点M到F1与F2两点的距离的差怎样表示?
③||MF1|-|MF2||与|F1F2|有何关系?
(请学生回答:应小于|F1F2| 且大于零,当常数等于|F1F2| 时,轨迹是以F1、F2为端点的两条射线;当常数大于|F1F2| 时,无轨迹)
二.理论建构
1.双曲线的定义
引导学生概括出双曲线的定义:
定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于<|F1F2|)的点轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(投影)
概念中几个关键词:“平面内”、“距离的差的绝对值”、“常数小于”
2.双曲线的标准方程
现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导(教师使用多媒体演示)
(1)建系
取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴建立平面直角坐标系。
(2) 设点
设M(x,y)为双曲线上任意一点,双曲线的焦距为2c(c>0),则F1(-c,0)、F2(c,0),又设点M与F1、F2的距离的差的绝对值等于常数2a(2a<2c).
(3)列式
由定义可知,双曲线上点的集合是P={M|||MF1|-|MF2||=2a}.
即:
(4)化简方程
由一位学生板演,教师巡视。化简,整理得:
移项两边平方得
两边再平方后整理得
由双曲线定义知
这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在x轴上,焦点是F1(-c,0)、F2(c,0),
思考: 双曲线的焦点F1(0,-c)、F2(0,c)在y轴上的标准方程是什么
学生得到: 双曲线的标准方程:.
注:
(1)双曲线的标准方程的特点:
①双曲线的标准方程有焦点在x轴上和焦点y轴上两种:
焦点在轴上时双曲线的标准方程为:(,);
焦点在轴上时双曲线的标准方程为:(,)
②有关系式成立,且
其中a与b的大小关系:可以为
(2).焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上
三.数学应用
例1已知双曲线两个焦点的坐标为,双曲线上一点P到的距离之差的绝对值等于8,求双曲线标准方程
解:因为双曲线的焦点在轴上,所以设它的标准方程为
(,)
∵ ∴ ∴
所求双曲线标准方程为
变式1:若|PF1|-|PF2|=6呢?
变式2:若||PF1|-|PF2||=8呢?
变式3:若||PF1|-|PF2||=10呢?
四.课堂小结:
双曲线的两类标准方程是焦点在轴上,焦点在轴上,有关系式成立,且 其中a与b的大小关系:可以为
PAGE
1
学会学习,学会思考一.课题:椭圆的几何性质(1)
二.教学目标:1.熟悉椭圆的几何性质(对称性、范围、顶点、离心率);
2.能说明离心率的大小对椭圆形状的影响.
三.教学重、难点:目标1;数形结合思想的贯彻,运用曲线方程研究几何性质.
四.教学过程:
(一)复习:
1.椭圆的标准方程.
(二)新课讲解:
1.范围:
由标准方程知,椭圆上点的坐标满足不等式,
∴,,∴,,
说明椭圆位于直线,所围成的矩形里.
2.对称性:
在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。若同时以代替,代替方程也不变,则曲线关于原点对称.
所以,椭圆关于轴、轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心.
3.顶点:
确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标.
在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。同理令得,即,是椭圆与轴的两个交点.
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.
同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长.
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,,,且,即.
4.离心率:
椭圆的焦距与长轴的比叫椭圆的离心率.
∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。
当且仅当时,,两焦点重合,图形变为圆,方程为.
(三)例题分析:
例1.求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出图形.
解:把已知方程化为标准方程,,,
∴,
∴椭圆长轴和短轴长分别为和,离心率,
焦点坐标,,顶点,,,.
练习、过适合下列条件的椭圆的标准方程:
(1)经过点、;
(2)长轴长等于,离心率等于.
解:(1)由题意,,,又∵长轴在轴上,
所以,椭圆的标准方程为.
(2)由已知,,
∴,,∴,
所以,椭圆的标准方程为或.
例3.如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)为一个焦点的椭圆。已知它的近地点(离地面最近的点)距地面,远地点(离地面最远的点)距地面,并且、、在同一直线上,地球半径约为,求卫星运行的轨道方程(精确到).
解:如图,建立直角坐标系,使点在轴上,为椭圆右焦点(记为左焦点),
设椭圆标准方程为(),
则,

解得:
∴,
所以,卫星的轨道方程是.
五.小结:椭圆的几何性质(对称性、范围、顶点、离心率).
图①
学会学习,学会思考抛物线的简单几何性质(2)
教学目的:
1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;
2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;
3.在对抛物线几何性质的讨论中,注意数与形的结合与转化
教学重点:抛物线的几何性质及其运用
教学难点:抛物线几何性质的运用
授课类型:新授课
教学过程:
一、复习引入:
1.抛物线定义:
2.抛物线的标准方程:
二、讲解新课:
1、抛物线的几何性质
标准方程 图形 顶点 对称轴 焦点 准线




注意强调的几何意义:是焦点到准线的距离
2、通径:
三、讲解范例:
例1 已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形.
例2 汽车前灯的反光曲面与轴截面的交线是抛物线,灯口直径197mm,反光曲面的顶点到灯口的距离为69mm,由抛物线的性质可知,当灯泡按装载抛物线的焦点处,经反光曲面反射后的光线是平行光线,为了获得平行光线,应怎样安装灯泡(精确到1 mm)
例3 过抛物线的焦点F任作一条直线m,交这抛物线于A、B两点,
求证:以AB为直径的圆和这抛物线的准线相切.
四、课堂练习:课本47页 练习 1,2,3
五、小结 :抛物线、焦点、顶点、对称轴、准线、中心等
PAGE
1
学会学习,学会思考课题: 双曲线的简单几何性质(共2课时)
一、教学目标
1.了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。
2.能用双曲线的简单几何性质解决一些简单问题。
二、教学重点、难点
重点:双曲线的几何性质及初步运用。
难点:双曲线的渐近线。
三、教学过程
(一)复习提问引入新课
1.椭圆有哪些几何性质,是如何探讨的?
2.双曲线的两种标准方程是什么?
下面我们类比椭圆的几何性质来研究它的几何性质.
(二)类比联想得出性质(范围、对称性、顶点)
引导学生完成下列关于椭圆与双曲线性质的表格
(三)渐近线
双曲线的范围在以直线和为边界的平面区域内,那么从x,y的变化趋势看,双曲线与直线具有怎样的关系呢?
根据对称性,可以先研究双曲线在第一象限的部分与直线的关系。
双曲线在第一象限的部分可写成:
当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.
在其他象限内也可以证明类似的情况.
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字
母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精
再描几个点,就可以随后画出比较精确的双曲线.
(四)离心率
由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:
变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.
这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.
(五)例题讲解
例1求双曲线的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程.
分析:由双曲线的标准方程,容易求出.引导学生用双曲线的实轴长、虚轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在轴上的渐近线是.
练习P41 练习1
例2 已知双曲线的中心在原点,焦点在y轴上,焦距为16,离心率为,求双曲线的标准方程。
例3求与双曲线共渐近线,且经过点的双曲线的标准方及离心率.
分析:已知双曲线的渐近线求双曲线的标准方程:方法一按焦点位置分别设方程求解;方法二可直接设所求的双曲线的方程为
求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.
练习P41 练习2
例5 如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.
分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.
例6 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为,上口半径为,下口半径为,高为.试选择适当的坐标系,求出双曲线的方程(各长度量精确到).
(六)课堂练习
1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.
(1)16x2-9y2=144;
(2)16x2-9y2=-144.
2.求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;
(2)焦距是10,虚轴长是8,焦点在y轴上;
曲线的方程.
点到两准线及右焦点的距离.
PAGE
1
学会学习,学会思考