中小学教育资源及组卷应用平台
华师大版2023-2024九年级上期末模拟试题3
考试范围:九上-九下26章
姓名:__________班级:__________考号:__________总分__________
1 、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
下列正确的是( )
A.=2+3 B.=2×3 C.=32 D.=0.7
一元二次方程x2﹣6x﹣6=0配方后化为( )
A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3
神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )
A.平移 B.旋转 C.轴对称 D.黄金分割
下列命题是真命题的是( )
A.相等的两个角是对顶角
B.相等的圆周角所对的弧相等
C.若a<b,则ac2<bc2
D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是
在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是( )
A.(3,﹣5) B.(﹣3,5) C.(3,5) D.(﹣3,﹣5)
扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )
A.(30﹣x)(20﹣x)=×20×30
B.(30﹣2x)(20﹣x)=×20×30
C.30x+2×20x=×20×30
D.(30﹣2x)(20﹣x)=×20×30
如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为( )
A. B. C.2 D.
如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是( )
A.20cm B.18cm C.2cm D.3cm
如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是( )
A.4.5 B.5 C.5.5 D.6
如图,在△ABC中,∠ABC=90°,AB=3,BC=4,点D在边AC上,且BD平分△ABC的周长,则BD的长是( )
A. B. C. D.
函数的零点是指使函数值等于零的自变量的值,则下列函数中存在零点的是( )
A. B. C. D.
在平面直角坐标系中,正方形A1 B1C1 D1 、D1E1E2B2 、A2B2C2D2 、D2E3E4B3 、A3B3C3D3 ……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1 B1C1 D1的边长为1,∠B1C1 O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B22015C2015D22015的边长是( )
A. B. C. D.
2 、填空题(本大题共6小题,每小题4分,共24分)
如图,若点A的坐标为,则sin∠1= .
关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是 .
一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.
如图,在中,,,分别是边,,的中点,若的周长为10,则的周长为______.
如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为 .
在平面直角坐标系中,垂直于x轴的直线l分别于函数y=x-a+1和y+x2-2ax的图像相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是_______
3 、解答题(本大题共8小题,共78分)
(1)计算:
(2)解方程:
某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:
(1)观众区的水平宽度AB,
(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,结果精确到0.1m)
如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.
(1)点A.A'之间的距离是 ,
(2)请在图中画出△A'B'C'.
小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.
(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;
(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等
①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.
( http: / / www. / " \o "中国教育出版网\" )
从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下的5组(满分为100分):A组:50≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100,分别制成频数分布直方图和扇形统计图如图.
(1)根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);
(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;
(3)若甲、乙两班参加测试的学生成绩统计如下:
甲班:62,64,66,76,76,77,82,83,83,91;
乙班:51,52,69,70,71,71,88,89,99,100.
则可计算得两班学生的样本平均成绩为x甲=76,x乙=76;样本方差为s甲2=80,s乙2=275.4.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.
在矩形的边上取一点,将沿翻折,使点恰好落在边上点处.
(1)如图1,若,求的度数;
(2)如图2,当,且时,求的长;
(3)如图3,延长,与的角平分线交于点,交于点,当时,求出的值.
观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A.B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.
(1)求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;
(3)拓展提升:如图3,∠E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.
已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).
(1)若抛物线的顶点坐标为(1,1),求b,c的值,
(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围,
(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.
答案解析
1 、选择题
【考点】二次根式的性质与化简.
【分析】根据=判断A选项;根据= (a≥0,b≥0)判断B选项;根据=|a|判断C选项;根据算术平方根的定义判断D选项.
解:A.原式=,故该选项不符合题意;
B、原式=×=2×3,故该选项符合题意;
C、原式==92,故该选项不符合题意;
D、0.72=0.49,故该选项不符合题意;
故选:B.
【点评】本题考查了二次根式的性质与化简,掌握= (a≥0,b≥0)是解题的关键.
【考点】解一元二次方程﹣配方法.
【分析】方程移项配方后,利用平方根定义开方即可求出解.
解:方程整理得:x2﹣6x=6,
配方得:x2﹣6x+9=15,即(x﹣3)2=15,
故选A
【点评】本题主要考查一元二次函数的配方法,属于基础题.
【考点】黄金分割.
【分析】利用黄金分割比的意义解答即可.
解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,
又黄金分割比为≈0.618,
∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,
故选:D.
【点评】本题主要考查了数学与自然界与数学知识的联系,熟悉线段的黄金分割是解题的关键.
【考点】命题与定理,概率公式,不等式的性质,对顶角、邻补角,圆周角定理.
【分析】根据对顶角的定义、圆周角,不等式的性质、概率公式判断即可.
解:A.相等的两个角不一定是对顶角,原命题是假命题,
B、在同圆或等圆中,相等的圆周角所对的弧相等,原命题是假命题,
C、若a<b,c=0时,则ac2=bc2,原命题是假命题,
D、在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,是真命题,
故选:D.
【点评】考查了命题与定理的知识,解题的关键是了解对顶角的定义、圆周角,不等式的性质、概率公式等知识,难度不大.
【考点】关于原点对称的点的坐标
【分析】根据关于原点对称的点的坐标特点解答.
解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),
故选:C.
【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.
【考点】由实际问题抽象出一元二次方程
【分析】根据空白区域的面积=矩形空地的面积可得.
解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,
故选:D.
【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.
【考点】反比例函数图象上点的坐标特征,正切定义
【分析】利用菱形的性质, 根据正切定义即可得到答案.
解:设,,
∵点为菱形对角线的交点,
∴,,,
∴,
把代入得,
∴,
∵四边形为菱形,
∴,
∴,解得,
∴,
在中,,
∴.
故选:A.
【点评】本题考查了反比例函数图象上点的坐标特征,解题关键在于运用菱形的性质.
【考点】二次函数的最值;勾股定理.
【分析】根据已知条件得到CP=6﹣t,得到PQ===,于是得到结论.
解:∵AP=CQ=t,
∴CP=6﹣t,
∴PQ===,
∵0≤t≤2,
∴当t=2时,PQ的值最小,
∴线段PQ的最小值是2,
故选C.
【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.
【考点】 三角形中位线定理; 三角形的面积.
【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.
解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,
∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,
∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,
同理可得△AEG的面积=,
△BCE的面积=×△ABC的面积=6,
又∵FG是△BCE的中位线,
∴△EFG的面积=×△BCE的面积=,
∴△AFG的面积是×3=,
故选:A.
【点评】本题主要考查了三角形的面积,解决问题的关键是掌握:三角形的中线将三角形分成面积相等的两部分.
【考点】勾股定理,相似三角形的判定和性质
【分析】根据勾股定理得到AC==5,求得△ABC的周长=3+4+5=12,得到AD=3,CD=2,过D作DE⊥BC于E,根据相似三角形的性质得到DE=,CE=,根据勾股定理即可得到结论.
解:在△ABC中,∠ABC=90°,AB=3,BC=4,
∴AC==5,
∴△ABC的周长=3+4+5=12,
∵BD平分△ABC的周长,
∴AB+AD=BC+CD=6,
∴AD=3,CD=2,
过D作DE⊥BC于E,
∴AB∥DE,
∴△CDE∽△CAB,
∴,
∴,
∴DE=,CE=,
∴BE=,
∴BD===,
故选:C.
【点评】本题考查了勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.
【考点】函数值,抛物线与x轴的交点
【分析】把代入四个函数解析式,解方程即可得到答案.
解:当
<,
原方程没有实数解,
没有零点,故不符合题意,
当
显然,方程没有解,
所以没有零点,故不符合题意,
当
显然方程无解,
所以没有零点,故不符合题意,
当
所以有两个零点,故符合题意,
故选
【点评】本题考查的是函数的零点,即函数与轴的交点的情况,掌握令,再解方程是解题的关键.
【考点】正方形的性质;解直角三角形.
【分析】用正方形的性质以及平行线的性质分别得出D1E1= E2B2=,B2C2=,进而得出B3C3,从而可求出答案.
解:∵正方形A1 B1C1 D1的边长为1,∠B1C1 O=60°,B1C1∥B2C2∥B3C3,
∴∠B3C3E4=60°,∠D1C1E1=30°,∠E2B2C2=30°,
∴D1E1= D1C1=
∴D1E1= E2B2=,
∴cos30°=
解得:B2C2=
∴B3E4=,
cos30°=
解得:B3C3= ,
……
B2015C2015=
故选D.
【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
2 、填空题
【考点】锐角三角函数的定义;坐标与图形性质.
【分析】根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.
解:如图,,
由勾股定理,得
OA==2.
sin∠1==,
故答案为:.
【点评】本题考查了锐角三角函数,利用勾股定理得出OA的长是解题关键.
【考点】根的判别式,一元二次方程的定义.
【分析】根据一元二次方程解的定义和根的判别式的意义得到k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,然后求出两不等式的公共部分即可.
解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,
解得k<2且k≠1,
所以k的取值范围是k<2且k≠1.
故答案为:k<2且k≠1.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根,当Δ=0时,方程有两个相等的实数根,当Δ<0时,方程无实数根.
【考点】概率公式
【分析】先分别确定从袋子中随机摸出一个小球的总结果数和摸出的是白球的结果数,再用概率公式求解即可.
解:袋子中一共有5个球,从袋子中随机摸出一个小球,总的结果数是5个,
其中,摸出的小球是白球的结果数为3个,
因此,摸出的小球是白球的概率为;
故答案为:.
【点评】本题考查了概率公式的实际应用,解决本题的关键是读懂题意和牢记概率公式等.
【考点】三角形中位线定理
【分析】根据三角形中位线定理得到AC=2DE,AB=2EF,BC=2DF,根据三角形的周长公式计算,得到答案.
解:∵△DEF的周长为10,
∴DE+EF+DF=4,
∵D,E,F分别是AB,BC,CA的中点,
∴AC=2DE,AB=2EF,BC=2DF,
∴△ABC的周长=AC+AB+BC=2(DE+EF+DF)=20,
故答案为:20.
【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
【考点】旋转的性质;平行线的判定.相似三角形的判定与性质
【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B1A1C,再利用相似三角形的性质得出AD的长,进而得出BD的长.
解:∵将△ABC绕点C按逆时针方向旋转得到△A1B1C,
∴AC=CA1=6,AB=B1A1=3,∠A=∠CA1B1,
∵CB1∥AB,
∴∠B1CA1=∠D,
∴△CAD∽△B1A1C,
∴,
∴,
解得AD=12,
∴BD=AD﹣AB=12﹣3=9.
故答案为:9.
【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.
【考点】一次函数、二次函数与不等式的关系
【分析】首先求出y=x-a+1<0和y=x2-2ax<0的解集,然后分情况讨论,联立不等式,即可得到a的取值范围.
解:∵直线l分别与函数y=x-a+1和y=x2-2ax的图像相交于P,Q两点,且都在x轴的下方,
∴令y=x-a+1<0,解得x<a-1,
令y=x2-2ax<0,当a>0时,解得:0<x<2a;当a<0时,解得:2a<x<0,
①当a>0时,若有解,则,解得:a>1,
②当a<0时,若有解,则,解得:a<-1,
综上所述,实数a的取值范围是a>1或a<-1.
【点评】本题考查了一次函数、二次函数与不等式的关系,利用数形结合与分类讨论思想是解题关键.
3 、解答题
【考点】解一元二次方程,特殊角的三角函数值
【分析】(1)先运用二次根式的性质、特殊角的三角函数值、零次幂、负整数次幂化简,然后进行合并计算即可;
(2)去括号,移项,先化为一般式,然后运用求根公式解一元二次方程即可
解:(1)原式
(2)原方程可化为.
∵,,.
∴.
∴.
∴,.
【点评】本题考查了二次根式的性质、特殊角的三角函数值、零次幂、负整数次幂等知识以及一元二次方程的解法,掌握相关基础知识和一元二次方程的解法是解答本题的关键.
【考点】解直角三角形的应用﹣坡度坡角问题,解直角三角形的应用﹣仰角俯角问题
【分析】(1)根据坡度的概念计算,
(2)作CM⊥EF于M,DN⊥EF于N,根据正切的定义求出EN,结合图形计算即可.
解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,
∴AB=2BC=20(m),
答:观众区的水平宽度AB为20m,
(2)作CM⊥EF于M,DN⊥EF于N,
则四边形MFBC、MCDN为矩形,
∴MF=BC=10,MN=CD=4,DN=MC=BF=23,
在Rt△END中,tan∠EDN=,
则EN=DN tan∠EDN≈7.59,
∴EF=EN+MN+MF=7.59+4+10≈21.6(m),
答:顶棚的E处离地面的高度EF约为21.6m.
【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.
【考点】作图﹣平移变换,坐标与图形变化﹣平移.
【分析】(1)根据两点间的距离公式即可得到结论,
(2)根据平移的性质作出图形即可.
解:(1)∵A(﹣2,3),A'(2,3),
∴点A.A'之间的距离是2﹣(﹣2)=4,
故答案为:4,
(2)如图所示,△A'B'C'即为所求.
【点评】本题考查作图﹣平移变换,解题的关键是掌握平移变换的性质.
【考点】一元一次不等式的应用;二次函数的应用;矩形的性质.
【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;
(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;
②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x s+3x (12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;
解:(1)由题意300S+(48﹣S)200≤12000,
解得S≤24.
∴S的最大值为24.
(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,
∴AB=6﹣2a=4,CB=8﹣2a=6.
②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,
∵PQ∥AD,
∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),
由题意12(300﹣3x)+5x s+3x (12﹣s)=4800,
解得s=,
∵0<s<12,
∴0<<12,
∴0<x<50,
∴丙瓷砖单价3x的范围为0<3x<150元/m2.
【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.
【考点】列表法或画树状图法,频数分布直方图,扇形统计图
【分析】(1)由D组所占百分比求出D组的人数,再根据A.B、E、D组的人数求出C组人数,即可补全频数分布直方图,再求出样本平均数即可;
(2)画树状图,共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,再由概率公式求解即可;
(3)由两班样本方差的大小作出判断即可.
解:(1)D组人数为:20×25%=5(人),C组人数为:20﹣(2+4+5+3)=6(人),
补充完整频数分布直方图如下:
估算参加测试的学生的平均成绩为:76.5(分);
(2)把4个不同的考场分别记为:1、2、3、4,
画树状图如图:
共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,
∴小亮、小刚两名同学被分在不同考场的概率为;
(3)∵样本方差为s甲2=80,s乙2=275.4,
∴s甲2<s乙2,
∴甲班的成绩稳定,
∴甲班的数学素养总体水平好.
【点评】本题考查了用列表法或画树状图法求概率以及频数分布直方图和扇形统计图等知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
【考点】相似三角形综合题
【分析】(1)根据矩形的性质和直角三角形的性质,先得到,再由折叠的性质可得到;
(2)由三等角证得,从而得,,再由勾股定理求出DE,则;
(3)过点作于点,可证得.再根据相似三角形的性质得出对应边成比例及角平分线的性质即可得解.
解:(1)∵矩形,
∴,
由折叠的性质可知BF=BC=2AB,,
∴,
∴,
∴
(2)由题意可得,
,
∴
∴
∴,
∴
∴,
由勾股定理得,
∴,
∴;
(3)过点作于点.
∴
又∵
∴.
∴.
∵,即
∴,
又∵BM平分,,
∴NG=AN,
∴,
∴
整理得:.
【点评】本题是一道矩形的折叠和相似三角形的综合题,解题时要灵活运用折叠的性质和相似三角形的判定与性质的综合应用,是中考真题.
【考点】全等三角形的判定与性质,旋转的性质,等边三角形的性质
【分析】(1)根据题干可知本题考查全等三角形证明,先利用等角的余角相等得到∠EAC=∠BCD,则可根据“AAS”证明△AEC≌△CD。
(2)根据图2和条件,作B'D⊥AC于D,先证明△B'AD≌△A B'D得到B'D=AC=6,
则可根据三角形面积公式计算;
(3)根据图3,利用旋转的性质得∠FOP=120°,OP=OF,
再证明△BOF≌△CPO得到PC=OB=1,
则EP=CE+CP=5,然后计算点P运动的时间t.
解:(1)∵∠ACB=90°,
∴∠ACE+∠DCB=90°,
∵BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
∴∠EAC+∠ACE=90°,
∴∠EAC=∠DCB,
又∵AC=BC,
∴△AEC≌△CDB(AAS);
(2)如图2,作B'D⊥AC于D,
∵斜边AB绕点A逆时针旋转90°至AB',
∴AB’=AB,∠B’AB=90°,
即∠B′AC+∠BAC=90°,
而∠B+∠CAB=90°,
∴∠B=∠B'AC,
∴△B’AD≌△A B′D(AAS),
∴B′D=AC=6,
∴△A B′C的面积=6×6÷2=18;
(3)如图3,由旋转知,OP=OF,
∵△BCE是等边三角形,
∴∠CBE=∠BCE=60°
∴∠OCP=∠FBO=120°,
∠CPO+∠COP=60°,
∵∠POF=120°,
∴∠COP+∠BOF=60°,
∴∠CPO=∠BOF,在△BOF和△PCO中
∠OBF=∠PCO=120°,∠BOF=∠CPO,OF=OP
∴△BOF≌△PCO,
∴CP=OB,
∵EC=BC=4cm,OC=3cm,
∴OB=BC-OC=1,
∴CP=1,
∴EP=CE+CP=5,
∴点P运动的时间t=5÷2=2.5秒。
【点评】本题难道角度特别是需要作辅助线,要明确本题考点几何的综合变换,结合全等三角形及辅助线技巧,大胆猜想,小心求证。
【考点】二次函数综合题
【分析】(1)利用抛物线的顶点坐标和二次函数解析式y=﹣2x2+(b﹣2)x+(c﹣2020)可知,y=﹣2(x﹣1)2+1,易得b、c的值,
(2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入函数解析式,经过化简得到c=2x02+2020,易得c≥2020,
(3)由题意知,抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1,则y≤1.利用不等式的性质推知:,易得1≤m<n.由二次函数图象的性质得到:当x=m时,y最大值=﹣2m2+4m﹣1.当x=n时,y最小值=﹣2n2+4n﹣1.所以=﹣2m2+4m﹣1,=﹣2n2+4n﹣1通过解方程求得m、n的值.
解:(1)由题可知,抛物线解析式是:y=﹣2(x﹣1)2+1=﹣2x2+4x﹣1.
∴.
∴b=6,c=2019.
(2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),
代入解析式可得:.
∴两式相加可得:﹣4x02+2(c﹣2020)=0.
∴c=2x02+2020,
∴c>2020,
(3)由(1)可知抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1.
∴y≤1.
∵0<m<n,当m≤x≤n时,恰好≤≤,
∴≤.
∴.
∴≤1,即m≥1.
∴1≤m<n.
∵抛物线的对称轴是x=1,且开口向下,
∴当m≤x≤n时,y随x的增大而减小.
∴当x=m时,y最大值=﹣2m2+4m﹣1.
当x=n时,y最小值=﹣2n2+4n﹣1.
又,
∴.
将①整理,得2n3﹣4n2+n+1=0,
变形,得2n2(n﹣1)﹣(2n+1)(n﹣1)=0.
∴(n﹣1)(2n2﹣2n﹣1)=0.
∵n>1,
∴2n2﹣2n﹣1=0.
解得n1=(舍去),n2=.
同理,由②得到:(m﹣1)(2m2﹣2m﹣1)=0.
∵1≤m<n,
∴2m2﹣2m﹣1=0.
解得m1=1,m2=(舍去),m3=(舍去).
综上所述,m=1,n=.
【点评】主要考查了二次函数综合题,解答该题时,需要熟悉二次函数图象上点的坐标特征,二次函数图象的对称性,二次函数图象的增减性,二次函数最值的意义以及一元二次方程的解法.该题计算量比较大,需要细心解答.难度较大.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)