中小学教育资源及组卷应用平台
华师大版2023-2024九年级上期末模拟试题1
考试范围:九上-九下26章
姓名:__________班级:__________考号:__________总分__________
1 、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
下列运算正确的是( )
A.(x﹣y)2=x2﹣y2
B.|﹣2|=2﹣
C.﹣=
D.﹣(﹣a+1)=a+1
一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A.﹣2 B.1 C.2 D.0
下列命题:
①所有的等腰三角形都相似,
②有一对锐角相等的两个直角三角形相似,
③四个角对应相等的两个梯形相似,
④所有的正方形都相似.
其中正确命题的个数为( )
A.1 B.2 C.3 D.4
下列说法正确的是( )
A.甲、乙两人10次测试成绩的方差分别是S甲2=4,S乙2=14,则乙的成绩更稳定
B.某奖券的中奖率为,买100张奖券,一定会中奖1次
C.要了解神舟飞船零件质量情况,适合采用抽样调查
D.x=3是不等式2(x﹣1)>3的解,这是一个必然事件
据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
A.3.2(1﹣x)2=3.7 B.3.2(1+x)2=3.7
C.3.7(1﹣x)2=3.2 D.3.7(1+x)2=3.2
下列命题中真命题是( )
A.=()2一定成立
B.位似图形不可能全等
C.正多边形都是轴对称图形
D.圆锥的主视图一定是等边三角形
如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P( a,b),则点户在A1B1上的对应点P的坐标为( )
A.(a﹣2,b+3)
B.(a﹣2,b﹣3)
C.(a+2,b+3)
D.(a+2,b﹣3)
如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是( )
A. B. C. D.
如图,将沿边向右平移得到,交于点G.若..则的值为( )
A.2 B.4 C.6 D.8
无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为的处测得试验田右侧出界处俯角为,无人机垂直下降至处,又测得试验田左侧边界处俯角为,则,之间的距离为(参考数据:,,,,结果保留整数)( )
A. B. C. D.
若二次函数y=x2+bx的图像的对称轴是经过点(2,0)
且平行于y轴的直线,则关于x的方程x2+bx=5的解为( )
A. B. C. D.
已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是( )
A.当a=1时,函数图象经过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a<0,函数图象的顶点始终在x轴的下方
D.若a>0,则当x≥1时,y随x的增大而增大
1 、填空题(本大题共6小题,每小题4分,共24分)
若关于x的一元二次方程x2 +ax-6=0的一个根是3,则a=
(﹣)﹣3﹣2cos45°+(3.14﹣π)0+= .
有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是 .
二次函数的最大值是__________.
如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是 .
如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则= .
1 、解答题(本大题共8小题,共78分)
(1)计算:+sin245°﹣tan60°
(2)解方程:3x2+6x﹣4=0
小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1—4的四个球(除不编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.
一艘轮船由西向东航行,行驶到A岛时,测得灯塔B在它北偏东31°方向上,继续向东航行10nmile到达C港,此时测得灯塔B在它北偏西61°方向上,求轮船在航行过程中与灯塔B的最短距离.(结果精确到0.1nmile)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin61°≈0.87,cos61°≈0.48,tan61°≈1.80).
某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.
(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;
(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?
在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高.
(1)证明:△ABD∽△CBA,
(2)若AB=6,BC=10,求BD的长.
下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.
(1)三角形在平面直角坐标系中的位置如图1所示,简称G,G关于y轴的对称图形为,关于轴的对称图形为.则将图形绕____点顺时针旋转____度,可以得到图形.
(2)在图2中分别画出G关于 y轴和直线的对称图形,.将图形绕____点(用坐标表示)顺时针旋转______度,可以得到图形.
(3)综上,如图3,直线和所夹锐角为,如果图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕____点(用坐标表示)顺时针旋转_____度(用表示),可以得到图形.
如图,正方形ABCD中,P是对角线AC上的一个动点(不与A.C重合),连结BP,将BP绕点B顺时针旋转到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.
(1)连结CQ,求证:;
(2)若,求的值;
(3)求证:.
已知抛物线
(1)当时,请判断点(2,4)是否在该抛物线上;
(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;
(3)已知点、,若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.
答案解析
1 、选择题
【考点】二次根式的加减法,实数的性质,完全平方公式,去括号
【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.
解:A.原式=x2﹣2xy+y2,故本选项错误;
B、原式=2﹣,故本选项正确;
C、原式=2﹣,故本选项错误;
D、原式=a﹣1,故本选项错误;
故选:B.
【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.
【考点】根与系数的关系
【分析】根据根与系数的关系可得出x1x2=0,此题得解.
解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,
∴x1x2=0.
故选:D.
【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.
【考点】相似图形
【分析】根据相似图形的性质以及定义分别判断得出即可.
解:①所有的等腰三角形形状不一定相同,故不一定都相似,故此选项错误,
②有一对锐角相等的两个直角三角形相似,根据已知可得出三角形对应角相等,故此选项正确,
③四个角对应相等的两个梯形相似,在梯形内,做一腰的平行线,得一小梯形,显然不相似,故此选项错误,
④所有的正方形都相似,此选项正确.
故正确的有2个.
故选:B.
【点评】此题主要考查了相似图形的判定,根据相似图形的形状必须完全相同进而判断是解题关键.
【考点】随机事件,不等式的解集,全面调查与抽样调查,方差.
【分析】根据必然事件,随机事件,方差的意义,调查方式,分别进行判断即可.
解:A.∵4<14,∴,∴甲的成绩更稳定,故本选项不符合题意,
B、某奖券的中奖率为,则买100张奖券,不一定会中奖,是随机事件,故本选项不符合题意,
C、要了解神舟飞船零件质量情况,适合采用全面调查,故本选项不符合题意,
D、不等式2(x﹣1)>3的解集是x>2.5,∴x=3是这个不等式的解,是必然事件,故本选项符合题意,
故选:D.
【点评】本题考查了必然事件,随机事件,方差,抽样调查,全面调查,掌握这些定义是解题的关键.
【考点】由实际问题抽象出一元二次方程.
【分析】根据2020年的人均可支配收入×(1+年平均增长率)2=2022年的人均可支配收入,列出一元二次方程即可.
解:由题意得:3.2(1+x)2=3.7,
故选:B.
【点评】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
【考点】命题与定理
【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.
解:A.=()2当a<0不成立,假命题;
B、位似图形在位似比为1时全等,假命题;
C、正多边形都是轴对称图形,真命题;
D、圆锥的主视图一定是等腰三角形,假命题;
故选:C.
【点评】本题考查的是命题的真假判断,掌握二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念是解题的关键.
【考点】坐标与图形变化-平移.
【分析】根据点A.B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.
解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,
则P(a﹣2,b+3)
故选A.
【考点】动点问题的函数图象,二次函数的定义,特殊角的三角函数值
【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.
解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,
当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,
由上可得,选项C符合题意,
故选:C.
【点评】本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.
【考点】平移的性质,相似三角形的判定与性质
【分析】根据平移的性质可得AD=BE,且AD∥BE,故可得△CEG∽△ADG,由相似三角形的性质及已知条件即可求得△CEG的面积.
解:由平移的性质可得:AD=BE,且AD∥BE
∴△CEG∽△ADG
∴
即
∵
∴
∴
∵
∴
故选:B.
【点评】本题考查了平移的性质及相似三角形的判定与性质,相似三角形的性质是本题的关键.
【考点】解直角三角形的应用
【分析】根据题意易得OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,然后根据三角函数可进行求解.
解:由题意得:OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,
∴,
∴,,
∴;
故选C.
【点评】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.
【考点】抛物线与x轴的交点.
【分析】根据二次函数的对称轴x=-=2,求出b,代入方程,解方程即可.
解:由题意二次函数y=x2+bx-5的对称轴x=-=2,
∴b=-4,
∴方程x2-4x-5=0的解为x=-1或5.
故答案为-1 或 5
【点评】本题考查抛物线与x轴的交点,一元二次方程的解等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
【考点】抛物线与x轴的交点;二次函数图象与系数的关系.
【分析】A.将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根的判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;C、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.此题得解.
解:A.当a=1时,函数解析式为y=x2﹣2x﹣1,
当x=﹣1时,y=1+2﹣1=2,
∴当a=1时,函数图象经过点(﹣1,2),
∴A选项不符合题意;
B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,
令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,
∴当a=﹣2时,函数图象与x轴有两个不同的交点,
∴B选项不符合题意;
C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,
∴二次函数图象的顶点坐标为(1,﹣1﹣a),
当﹣1﹣a<0时,有a>﹣1,
∴C选项不符合题意;
D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,
∴二次函数图象的对称轴为x=1.
若a>0,则当x≥1时,y随x的增大而增大,
∴D选项符合题意.
故选D.
【点评】本题考查了二次函数的性质,主要利用了二次函数的与x轴的交点,二次函数的增减性,顶点坐标,难点在于利用a表示出顶点的横坐标与纵坐标,然后消掉a得到顶点所在的直线.
1 、填空题
【考点】一元二次方程方程的解
【分析】把x=3代入一元二次方程即可求出a.
解:∵关于x的一元二次方程x2 +ax-6=0的一个根是3,
∴9+3a-6=0,
解得a=-1.
故答案为:-1
【点评】本题考查了一元二次方程的根的意义,一元二次方程方程的解又叫一元二次方程的根,熟知一元二次方程根的意义是解题的关键.
【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.
解:原式=﹣8﹣+1+2=﹣7+,
故答案为:﹣7+
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
【考点】列表法与树状图法.
【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.
解:根据题意列表如下:
A B C
A AA BA CA
B AB BB CB
C AC BC CC
共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,
所以抽取的两张卡片上的字母相同的概率为=,
故答案为:.
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
【考点】二次函数顶点式求最值
【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数 ,故其在时有最大值.
解:∵,
∴有最大值,
当时,有最大值8.
故答案为8.
【点评】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.
【考点】三角形中位线定理;直角三角形斜边上的中线.
【分析】首先利用直角三角形斜边上的中线等于斜边的一半求得AB的长,然后根据三角形的中位线定理求解.
解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,即CD是直角三角形斜边上的中线,
∴AB=2CD=2×2=4,
又∵E、F分别是BC、CA的中点,即EF是△ABC的中位线,
∴EF=AB=×2=2,
故答案为:2.
【点评】本题考查了直角三角形的性质以及三角形的中位线定理,求得AB的长是本题的关键.
【考点】翻折变换(折叠问题),等边三角形的性质.相似三角形的性质和判定
【分析】根据等边三角形的性质、相似三角形的性质得到∠AED=∠BDF,根据相似三角形的周长比等于相似比计算即可.
解:∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,AB=AC=BC=6,
由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,
∴∠AED=∠BDF,
∴△AED∽△BDF,
∴===,
∴==,
故答案为:.
【点评】本题主要考查的是等边三角形的性质、翻折的性质、相似三角形的性质和判定,利用相似三角形的性质求得AE的长是解题的关键.
1 、解答题
【考点】实数的混合运算,特殊角的三角函数值,解一元二次方程
【分析】(1)根据特殊角的锐角三角函数的值即可求出答案;
(2)根据一元二次方程的解法即可求出答案.
解:(1)原式=+(﹣)=;
(2)∵3x2+6x﹣4=0,
∴a=3,b=6,c=﹣4,
∴△=36+4×3×4=84,
∴x==
【点评】本题考查了锐角的三角函数值和一元二次方程的解法,熟记锐角的三角函数值和掌握一元二次方程的解法是解答本题的关键.
【考点】游戏公平性;列表法与树状图法
【分析】列表得出所有等可能的情况数,找出数字之和大于5的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.
解:画树状图如下:
∴P(两次数字之和大于5),
P(两次数字之和不大于5),
∴这个游戏对双方不公平.
【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
【考点】解直角三角形的应用﹣方向角问题.
【分析】过B作BD⊥AC于D,则∠ADC=∠ADB=90°,设BD=x nmile,解直角三角形即可得到结论.
解:过B作BD⊥AC于D,
则∠BDC=∠ADB=90°,
∵∠ABD=31°,∠CBD=61°,
设BD=x nmile,
∴AD=BD tan31°,CD=BD tan61°,
∵AC=10nmile,
∴x tan31°+x tan61°=x(0.60+1.80)=10,
∴x=BD≈4.2nmile,
答:轮船在航行过程中与灯塔B的最短距离为4.2nmile.
【点评】本题考查了解直角三角形的应用﹣方向角问题,能通过解直角三角形求出BD=AD和AC=AD是解此题的关键.
【考点】二次函数的应用.
【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;
(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.
解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);
(2)设果园多种x棵橙子树时,可使橙子的总产量为w,
则w=
=﹣5x2+100x+60000
=﹣5(x﹣10)2+60500,
则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.
【点评】本题考查的是二次函数的应用,根据题意正确列出二次函数解析式、熟练运用配方法、掌握二次函数的性质是解题的关键.
【考点】相似三角形的判定与性质.
【分析】(1)根据已知条件得出∠BDA=∠BAC,又∠B为公共角,于是得出△ABD∽△CBA,
(2)根据相似三角形的性质即可求出BD的长.
(1)证明:∵AD是斜边BC上的高,
∴∠BDA=90°,
∵∠BAC=90°,
∴∠BDA=∠BAC,
又∵∠B为公共角,
∴△ABD∽△CBA,
(2)解:由(1)知△ABD∽△CBA,
∴,
∴,
∴BD=3.6.
【点评】本题考查了相似三角形的判定与性质,熟知有两个角相等的两个三角形相似是解题的关键.
【考点】坐标与图形变化-对称,坐标与图形变化-旋转
【分析】(1)根据图形可以直接得到答案;
(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;
(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.
解:(1)由图象可得,图形与图形关于原点成中心对称,
则将图形绕O点顺时针旋转180度,可以得到图形;
故答案为:O,180;
(2),如图;
由图形可得,将图形绕点(用坐标表示)顺时针旋转90度,可以得到图形,
故答案为:,90;
(3)∵当G关于y轴的对称图形为,关于轴的对称图形为时,与关于原点(0,0)对称,即图形绕O点顺时针旋转180度,可以得到图形;
当G关于 y轴和直线的对称图形,时,图形绕点(用坐标表示)顺时针旋转90度,可以得到图形,点(0,1)为直线与 y轴的交点,90度角为直线与 y轴夹角的两倍;
又∵直线和的交点为,夹角为,
∴当直线和所夹锐角为,图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕点(用坐标表示)顺时针旋转度(用表示),可以得到图形.
故答案为:,.
【点评】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.
【考点】正方形的性质,旋转的性质,全等三角形的判定和性质,相似三角形判定和性质
【分析】(1)由旋转知△PBQ为等腰直角三角形,得到PB=QB,∠PBQ=90°,进而证明△APB≌△CQB即可;
(2)设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,又△ABC为等腰直角三角形,所以BC=,PQ=,再证明△BQE∽△BCQ,由此求出BE,进而求出CE:BC的值;
(3)在CE上截取CG,并使CG=FA,证明△PFA≌△QGC,进而得到PF=QG,然后再证明∠QGE=∠QEG即可得到QG=EQ,进而求解.
解:∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°,
∵BP绕点B顺时针旋转到BQ,
∴BP=BQ,∠PBQ=90°,
∴∠ABC-∠PBC=∠PBQ-∠PBC,
∴∠ABP=∠CBQ,
在△APB和△CQB中,
,
∴△APB≌△CQB(SAS),
∴AP=CQ.
(2) 设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,
△ABC为等腰直角三角形,∴BC=,
在Rt△PCQ中,由勾股定理有:,
且△PBQ为等腰直角三角形,
∴,
又∠BCQ=∠BAP=45°,∠BQE=45°,
∴∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ,
∴△BQE∽△BCQ,
∴,代入数据:,
∴BE=,∴CE=BC-BE=,
∴,
故答案为:.
(3) 在CE上截取CG,并使CG=FA,如图所示:
∵∠FAP=∠GCQ=45°,
且由(1)知AP=CQ,且截取CG=FA,
故有△PFA≌△QGC(SAS),
∴PF=QG,∠PFA=∠CGQ,
又∵∠DFP=180°-∠PFA,∠QGE=180°-∠CGQ,
∴∠DFP=∠QGE,
∵DABC,
∴∠DFP=∠CEQ,
∴∠QGE=∠CEQ,
∴△QGE为等腰三角形,
∴GQ=QE,
故PF=QE.
【点评】本题考查了正方形的性质、旋转的性质、三角形全等的判定和性质、相似三角形判定和性质的综合,具有一定的综合性,本题第(3)问关键是能想到在CE上截取CG,并使CG=FA这条辅助线.
【考点】二次函数综合题
【分析】(1)先求出函数关系式,再把(2,4)代入进行判断即可;
(2)根据二次函数的顶点坐标公式求出抛物线顶点纵坐标,最大值即为顶点最高点的纵坐标,代入求解即可;
(3)运用待定系数法求出直线EF的解析式,代入二次函数解析式,求出交点坐标,再根据题意分类讨论,求出m的值即可.
解:(1)把m=0代入得,
当x=2时,
所以,点(2,4)不在该抛物线上;
(2)
=
∴抛物线的顶点坐标为(,)
∴纵坐标为
令
∵
∴抛物线有最高点,
∴当m=3时,有最大值,
将m=3代入顶点坐标得(2,5);
(3)∵E(-1,-1),F(3,7)
设直线EF的解析式为
把点E,点F的坐标代入得
解得,
∴直线EF的解析式为
将代入得,
整理,得:
解得
则交点为:(2,5)和(m+1,2m+3),
而(2,5)在线段EF上,
∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,
∴m+1<-1或m+1>3或m+1=2(此时2m+3=5),
∴此时抛物线顶点横坐标x顶点= 或x顶点=或x顶点=
【点评】本题考查了二次函数的图象及性质,解题关键是注意数形结合思想的运用.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)