(共26张PPT)
27.3.1位似(2)
人教版 九年级 下册
教材分析
知道四种变换(位似、轴对称、平移、旋转)的异同,能在复杂图形中找出这些变换.学会用图形坐标的变化来表示图形的位似变换.学会在平面直角坐标系中画一个图形的位似图形.培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值.
教学目标
教学目标:1. 理解平面直角坐标系中,位似图形对应点的坐标之间的联系.
2. 能够熟练准确地利用坐标变化将一个图形放大与缩小.
教学重点:在平面直角坐标系中画一个图形的位似图形.
教学难点:了解四种图形变换 (平移、轴对称、旋转和位似) 的异同,并能在
复杂图形中找出这些变换.
新知导入
情境引入
说一说: 画位似图形的一般步骤有哪些?
基本模型:
① 确定位似中心;
② 分别连接并延长位似中心和能代表原图的关键点;
③ 根据相似比,确定能代表所作的位似图形的关键点;
④ 顺次连接上述各点,得到放大或缩小的图形.
新知讲解
合作学习
O
y
x
A(1,2.5)
B(0,1)
C(2,1)
直角坐标系中的变换:
平移
轴对称
旋转
5
位似图形在直角坐标系中又有什么规律呢?
我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标之间的关系表示某些平移、轴对称和旋转 (中心对称).
那么,位似是否也可以用两个图形坐标之间的关系来表示呢?
D
x
y
A
B
C
探究1:在平面直角坐标系中,有两点 A (6,3),B (6,0).
以原点 O 为位似中心,相似比为,把线段 AB 缩小,观察对应点之间坐标的变化.
2
4
6
4
6
B'
-2
-4
-4
x
y
A
B
A'
A"
B"
O
把 AB 缩小后的线段为A′B′、A″B″,
A,B 的对应点坐标为:
A′ ( 2 ,1 ),B′ ( 2 ,0 );
A″ ( -2 ,-1 ),B" ( -2 ,0 ).
5
9
5
10
-5
-9
-5
x
y
O
-10
探究2:如图,△AOC三个顶点坐标分别为A(4,4),O(0,0),C(5,0).以点O为位似中心,相似比为2,将△AOC放大,观察对应顶点坐标的变化,你有什么发现?
位似变换后A,O,C的对应点为
A'(8 ,8 ),O(0,0 ),C' (10 ,0);
A" (-8 ,-8),O(0 ,0),C" (-10 ,0 ).
A
C
C'
A'
A"
C"
当位似图形在原点同侧时,其对应顶点坐标比为 2;
当位似图形在原点两侧时,其对应顶点坐标比为-2.
提炼概念
在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作两个.
一般地,在平面直角坐标系中, 以原点O为位似中心,位似比为k,若原图形上点A的坐标为(x,y),那么位似图形对应点A'的坐标为(kx,ky)或(-kx,-ky).
小结
典例精讲
例 如图,在平面直角坐标系中,△ABO 三个顶点的坐标分别为 A (-2,4),B (-2,0),O (0,0). 以原点 O 为位似中心,画出一个三角形使它与 △ABO的相似比为 .
2
4
6
2
-2
-4
x
y
A
B
O
分析:画三角形关键是确定它各顶点的坐标.根据前面的归纳可知,点 A 的对应点 A′ 的坐标为 ,即(-3,6),类似地,可以确定其他顶点的坐标.
解:利用位似中对应点的坐标的变化规律,分别取点 A′ (-3,6),B′ (-3,0),O (0,0).
A′
B′
顺次连接点 A′,B′,O,所得的 △A′B′O 就是要画的一个图形.
还有其他画法吗?自己试一试.
2
4
6
2
-2
-4
x
y
A
B
O
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在下图所示的图案中,你能找到这些变换吗?
想 一 想
归纳概念
名称 规律 变换方式
平移
轴对称 旋转 位似
对应点的横坐标或纵坐标加上(或减去)平移的单位长度.
以x轴为对称轴,则对应点横坐标相等,纵坐标互为相反数;
以y轴为对称轴,则对应点纵坐标相等,横坐标互为相反数.
若一个图形绕原点旋转180°,则旋转前后两个图形对应点的横坐标与纵坐标都互为相反数.
当以原点为位似中心时,变换前后两个图形对应点的同名坐标之比的绝对值等于相似比.
全等变换
相似变换
位似与平移、轴对称、旋转变换的对比
课堂练习
必做题
1.将平面直角坐标系中某个图案的各点坐标作
如下变化,其中属于位似变换的是( )
A.将各点的纵坐标乘以2,横坐标不变
B.将各点的横坐标除以2,纵坐标不变
C.将各点的横坐标、纵坐标都乘以2
D.将各点的纵坐标减去2,横坐标加上2
C
2.如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标为( )
A.(-4,-3)
B.(-3,-3)
C.(-4,-4)
D.(-3,-4)
A
选做题
3. △ABC 三个顶点坐标分别为 A (2,-2),B (4,-5),C (5,-2),以原点 O 为位似中心,将这个三角形放大为原来的 2 倍.
画法一:
A' (4,-4),
B' (8,-10),
C' (10,-4);
画法二:
A″ (-4,4),
B″ (-8,10),
C″ (-10,4).
C
2
4
6
-4
x
y
A
B
2
-2
A"
B"
C"
综合拓展题
4.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B和点B′的坐标分别为B(3,1),B′(6,2).
(1)请你根据位似的特征并结合点B的坐标变化回答下列问题:
①若点A的坐标为(2.5,3),则
点A′的坐标为_________;
②△ABC与△A′B′C′的相似比
为________;
(5,6)
1:2
(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示)
∴△A′B′C′的面积为4m.
解:∵△ABC与△A′B′C′的相似比为1∶2,
∴S△ABC:S△A′B′C′=1:4.
∵△ABC的面积为m,
作业布置
必做题
1.关于对位似图形的表述,下列命题正确的是 .(只填序号)
①相似图形一定是位似图形,位似图形一定是相似图形;
②位似图形一定有位似中心;
③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;
④位似图形上任意两点与位似中心的距离之比等于位似比.
②③
选做题
2.如图,在直角坐标系中,作出五边形ABCDE的位似图形,使得新图形A1B1C1D1E1与原图形对应线段比为2∶1,位似中心是坐标原点O.
E1
A1
B1
C1
D1
综合拓展题
3. 如图所示, 图中的小方格都是边长为1的正方形, △ABC与△A′B′C′是以O为位似中心的位似图形, 它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′
的相似比;
x
y
O
相似比为2∶1
(3)以位似中心O为坐标原点, 以格线所在直线为坐标轴建立平面直角坐标系, 画出△A′B′C′关于点O 中心对称的△A″B″C″, 并直接写出△A″B″C″各顶点的坐标.
x
y
O
A″(6,0),
B″(3,-2),
C″(4,-4).
课堂总结
在坐标系中作位似图形
用坐标表示位似
位似图形的坐标变化规律
一般地,在平面直角坐标系中,画一个与原图形位似的图形,使它和原图形的相似比为k,那么原图形上的点(x,y),对应位似图形上的点的坐标为(kx,ky)或(-kx,-ky).
(3)顺次连接上述各点,得到放大或缩小的图形.
(1)根据相似比,计算对应点的坐标;
(2)分别在坐标系中画出上述对应点;
作业布置
教材课后配套作业题。
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
学 科 数学 年 级 九年级 设计者
教材版本 人教版 册、章 九年级下册 第27章
课标要求 1)了解比例的基本性质、线段的比、成比例的线段;通过建筑艺术上的实例了解黄金分割; 2)通过具体实例认识图形的相似。了解相似多边形和相似比; 3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例; 4)了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似,三边成比例的两个三角形相似。*了解相似三角形判定定理的证明; 5)了解相似三角形的性质定理,相似三角形对应线段的比等于相似比;面积比等于相似比的平方; 6)了解图形的位似,知道利用位似可以将一个图形放大或缩小; 7)会利用图形的相似解决一些简单的实际问题.
内容分析 中学阶段重点研究的两个平面图形间的关系是全等和相似,全等是一种特殊的相似.本章将在前面对全等形研究的基础上,借鉴全等三角形研究的基本套路对相似图形进行研究.本章研究的主要问题是相似图形的定义、性质和判定方法,研究的主要载体是三角形.此外,教科书在前面的章节中介绍了平移、轴对称和旋转三种图形的全等变换,本章将介绍一种新的图形变换-位似.
学情分析 本章有很多内容需要让学生用量角器、刻度尺来测量,锻炼学生动手能力,并体会数学知识是从实践中产生出来的,确认数学是有用的。所以教师在课堂要给学生充裕的时间,重视对学生技能的训练与培养. 识图能力的培养:教师在教学中应当引导学生认识基本图形,并使学生会描述基本图形的对应关系,以及在复杂图形中分离出基本图形.
单元目标 (一)教学目标 1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质; 2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律. (二)教学重点、难点 教学重点:1)利用相似三角形的知识解决实际的问题; 2)位似的应用及在平面直角坐标系中作位似图形. 教学难点:把实际问题抽象为相似三角形、位似图形这一数学模型并求解.
单元知识结构框架及课时安排 (一)单元知识结构框架 1.教材特点分析: 1.从实际间题引入数学内容,通过对实际问题的分析解决得出结论,认识相似图形的特征与性质,让学生充分感受到数学与现实世界的联系. 2.通过观察、测量、画图、推理等方法让学生探索得出结论,强调发现结论的过程,加强合情推理。3.逐步渗透一些逻辑思维方法,体现数学的理性特征. 4.教材中给学生留下适当的探索空间,也给教师的教学留有一定的余地,有助于学生的思维活动,有助于教师的创造性教学,也有助于教师与学生的合作. 5.强调相似三角形在现实生活中的应用. 6.加强了坐标与现实生活的联系. 7.通过用坐标来研究图形变换的内容,让学生初步体会数形间的关系. 2.本章教学中应注意的问题: 相似图形是现实生活中广泛存在的现象,探索并证明相似图形的一些重要性质,不仅可以使学生更好地认识、描述物体的形状体会、理解图形的相似在刻画现实世界中的作用意义,而且可以通过解决现实世界中的具体问题,提高学生应用数学知识的能力,在判定图形的关系和证明图形性质的过程中,还可以提高学生的逻辑思维和推理能力,因此,本部分知识在中考中非常重要,相似三角形是中考的必考内容,位似图形在全国各地中考题中也经常出现. 3.本章教学建议: 1.在"用坐标来确定位置"中,首先要让学生认识到现实生活中可以利用直角坐标系来确定方位,教学中可以让学生查找城市地图中的某地点(一些地图用字母A、B、C.....和数字1、2、3.....来确定某个地点的位置,方便人们查找),让学生体会他的实际应用.然后要求学生能根据实际问题和背景建立怡当的坐标系来描述物体的位置. 2.教材中小明通过角度和距离来表述物体的位置,实际上是极坐标方,教材中没有明确,但教学时可以告诉学生,这也是一种用坐标来表示物体位置的方法,这种方法在军事和地理中常常用到,也要求学生掌握. 3.到本章为止,我们己经学过平移、旋转、对称、相似等变换在本节中都可以让学生去体会图形经过这些变换后坐标的变化情况,这样对图形的变换有史深的认识而H初步渗透数形结合的思想.突出了以下三点:(1)图形变换的数学思想方法:(2)探索图形性质的有效工具:(3)合情推理和演绎推理的有机结合. 4.单元知识结构框架: (二)课时安排 课时编号单元主要内容课时数27.1.1图形的相似(1) 127.1.227.1图形的相似(2) 127.2.1 (1)27.2.1 相似三角形的判定(1) 127.2.1 (2)27.2.1 相似三角形的判定(2) 127.2.1(3)27.2.1 相似三角形的判定(3) 127.2.1 (4)27.2.1 相似三角形的判定(4) 127.2.227.2.2相似三角形的性质127.2.3 27.2.3 相似三角形应用举例127.3.1(1)27.3.1位似(1)127.3.1(2)27.3.1位似(2)1
达成评价 课题课时目标达成评价评价任务27.1图形的相似(1) 1.理解并掌握两个图形相似的概念. 2.学会判断相似图形,在动手操作中认识相似图形. 3.联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律. 1.对相似图形概念的理解. 2.正确地运用相似图形的特征解决生活中实际问题.活动一:学生自主探索出相似图形的基本特征. 活动二:观察、操作、比较、交流中,探索并发现相似图形的规律.27.1图形的相似(2) 1.了解比例线段的定义. 2.掌握相似多边形的判定和相似多边形的性质. 3.学会根据相似多边形判定来识别两个多边形是否相似,会运用其性质进行相关的计算. 4.经历相似图形的认识过程,观察相似图形的关系,得到相似多边形对应边成比例,对应角相等的性质. 1.会根据相似多边形判定来识别两个多边形是否相似,会运用其性质进行相关的计算. 2.掌握相似多边形的判定和相似多边形的性质. 活动一:学生思考、交流 . 活动二:共同探究关于相似多边形的判定. 活动三:探究巩固例题. 27.2.1 相似三角形的判定(1) 1.了解相似三角形的概念; 2.掌握平行线分线段成比例定理的基本事实、推论以及利用平行线法判定三角形相似; 3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题; 经历平行线分线段成比例的认识过程,得到利用平行线法判定三角形相似的方法. 1.掌握相似三角形的概念质. 2.掌握平行线分线段成比例定理的基本事实、推论以及利用平行线法判定三角形相似.活动一:学习关于相似三角形的知识,熟记相似的表示符号. 活动二:回顾上节课学习的关于图形的相似多边形相关知识. 活动三:探究巩固例题.27.2.1 相似三角形的判定(2) 1.理解并掌握“三边成比例的两个三角形相似”的判定方法. 2.会运用“三边成比例的两个三角形相似”的判定方法解决简单问题. 3.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力. 1.会“三边成比例的两个三角形相似”的判定方法. 2.运用“三边成比例的两个三角形相似”的判定方法解决简单问题. 活动一:学生自己动手、动脑,掌握三边成比例的两个三角形相似的知识. 活动二:完成例题学习巩固知识点.27.2.1 相似三角形的判定(3) 1.理解并掌握“两组对应边的比相等且它们夹角相等的两个三角形相似” 的判定定理. 2.会运用“两组对应边的比相等且它们夹角相等的两个三角形相似”的判定方法解决简单问题. . 1.“两组对应边的比相等且它们夹角相等的两个三角形相似”的判定方法. 2.通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验.活动一:从问题导入知识,引起学生的关注,提高学习的热情. 活动二:共同探究关于两边成比例且夹角相等的两个三角形相似的知识. 活动三:完成例题学习巩固知识点.27.2.1 相似三角形的判定(4) 1.理解并掌握“两角对应相等,两个三角形相似”的判定方法. 2.掌握判定两个直角三角形相似的方法,并能进行相关计算与推理. 3.能够运用三角形相似的条件解决简单的问题.1.掌握“两角对应相等,两个三角形相似”的判定方法. 2.运用两个三角形相似的判定方法解决简单问题.活动一:学生观察导入中的图片,认真思考问题. 活动二:共同探究关于两角分别相等的两个三角形相似的知识. 活动三:完成例题学习巩固知识点.27.2.2相似三角形的性质1.掌握相似三角形对应高线、中线和角平分线的比与相似比之间的关系. 2.理解并掌握相似三角形及相似多边形的周长与面积的性质. 3.能够运用相似三角形的性质解决相关问题1.掌握相似三角形的性质. 2.会运用相似三角形的性质解决相关问题.活动一:从问题导入知识,引起学生的关注,提高学习的热情。 活动二:完成例题学习巩固知识点.27.2.3 相似三角形应用举例1.进一步巩固相似三角形的知识;能够运用三角形相似的知识解决不能直接测量的物体的长度和高度(如测量金字塔高度问题、测量河宽)问题. 2.通过把实际问题转化成有关相似三角形的数学模型进一步了解数学建模的思想,培养学生分析问题、解决问题的能力. 运用相似三角形解决实际问题. 2.把实际问题转化成有关相似三角形的数学模型,在实际问题中建立数学模型.活动一:回顾相似三角形的内容,起到以旧引新,建立新旧知识间的联的作用. 活动二:完成例题学习巩固知识点.27.3.1位似(1)1、了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质. 2、掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.1.了解位似与相似的联系和区别,掌握位似图形的性质. 2.利用作位似图形的方法将一个图形放大或缩小.活动一:学生观察,认真、积极思考,回答问题. 活动二:学生观察并回答教师规范解答,教师出示练习题组,学生尝试练习师巡视,个别指导.27.3.1位似(2)1.掌握把一个图形按一定大小比例放大或缩小后,掌握对应点的坐标变化的规律. 2.学会用图形坐标的变化来表示图形的位似变换. 3.学会在平面直角坐标系中画一个图形的位似图形1.会在平面直角坐标系中画一个图形的位似图形. 2.掌握把一个图形按一定大小比例放大或缩小后,对应点的坐标变化的规律.活动一:学生观察并回答教师规范解答,教师出示练习题组,学生尝试练习师巡视,个别指导. 活动二:共同探究在平面直角坐标系中的位似图形坐标变换的规律. 活动三:完成例题学习巩固知识点.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
分课时教学设计
第10课时《 27.3.1位似(2) 》教学设计
课型 新授课口 复习课口 试卷讲评课口 其他课口
教学内容分析 知道四种变换(位似、轴对称、平移、旋转)的异同,能在复杂图形中找出这些变换.学会用图形坐标的变化来表示图形的位似变换.学会在平面直角坐标系中画一个图形的位似图形。培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值.
学习者分析 让学生自己动手、动脑,掌握在平面直角坐标系中的位似图形坐标变换的规律.会用图形坐标的变化来表示图形的位似变换.
教学目标 1.学会用图形坐标的变化来表示图形的位似变换. 2.学会在平面直角坐标系中画一个图形的位似图形. 3.培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值.
教学重点 在平面直角坐标系中画一个图形的位似图形.
教学难点 掌握把一个图形按一定大小比例放大或缩小后,对应点的坐标变化的规律.
学习活动设计
教师活动学生活动环节一:情境引入教师活动1: 新知引入 回顾位似的知识: 1. 对应顶点的连线 相交于一点的两个相似多边形叫做位似图形,这个交点叫做 位似中心 . 2.位似图形是一种特殊的 相似 图形,它具有相似图形的所有性质。位似图形上任意一对对应点到位似中心的距离之比叫做 位似比 ,位似图形的 位似比 也叫做位似比. 3.利用位似可以把一个图形放大或缩小。画位似图形时,关键要确定 位似中心 ,根据 相似比 确定关键点。 【新知导入】我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标之间的关系表示某些平移、轴对称和旋转 (中心对称). 那么,位似是否也可以用两个图形坐标之间的关系来表示呢?今天我们就一起来学习平面直角坐标系中的位似的知识。 学生活动1: 通过探究活动理解. 从问题导入知识,引起学生的关注,提高学习的热情. 活动意图说明: 从实际出发,从学生已有的生活经验出发,回顾位似的内容,起到以旧引新,建立新旧知识间的联的作用. 进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展.环节二:新课讲解教师活动2: 探究一:直角坐标系中的位似变换 1.在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段 AB 缩小,观察对应点之间坐标的变化. 把 AB 缩小后的线段为A′B′、A″B″, A,B 的对应点坐标为: A′(2,1),B′(2,0 ;A″(2,-1),B"(-2,0). 当位似图形在原点同侧时,对应顶点坐标比为 ; 当位似图形在原点两侧时,对应顶点坐标比为-. 2.如图,△AOC三个顶点坐标分别为A(4,4),O(0,0),C(5,0).以点O为位似中心,相似比为2,将△AOC放大,观察对应顶点坐标的变化,你有什么发现? 位似变换后A,O,C的对应点为 A'(8 ,8 ),O(0,0 ),C' (10 ,0); A"(-8 ,-8),O(0 ,0),C" (-10 ,0 ). 当位似图形在原点同侧时,对应顶点坐标比为 2; 当位似图形在原点两侧时,对应顶点坐标比为-2 教师归纳总结讲解: 在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作两个. 一般地,在平面直角坐标系中, 以原点O为位似中心,位似比为k,若原图形上点A的坐标为(x,y),那么位似图形对应点A'的坐标为(kx,ky)或(-kx,-ky). 学生活动2: 学生相互交流. 共同探究在平面直角坐标系中的位似图形坐标变换的规律. 活动意图说明: 引导学生建立模型,培养学生学以致用的能力,会用图形坐标的变化来表示图形的位似变换.知道把一个图形按一定大小比例放大和缩小后,点的坐标变化规律.提高灵活地运用所学知识解决问题的能力.环节三:例题讲解【例】如图,△ABO 三个顶点的坐标分别为 A (-2,4),B (-2,0),O (0,0). 以原点 O 为位似中心,画出一个三角形使它与 △ABO 的相似比为. 分析:画三角形关键是确定它各顶点的坐标.根据前面的归纳可知,点A的对应点A′的坐标为(,),即(-3,6),类似地,可以确定其他顶点的坐标. 解:方法一:利用位似中对应点的坐标的变化规律,分别取点 A′ (-3,6),B′ (-3,0),O (0,0).顺次连接点 A′,B′,O,所得的 △A′B′O 就是要画的一个图形. 方法二:利用位似中对应点的坐标的变化规律,分别取点 A′ (3,-6),B′ (3,0),O (0,0). 顺次连接点 A′,B′,O,所得的 △A′B′O 就是要画的一个图形. 【想一想】至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在下图所示的图案中,你能找到这些变换吗? 总结位似与平移、轴对称、旋转变换的异同 学生活动3: 学生观察并回答教师规范解答,教师出示练习题组,学生尝试练习师巡视,个别指导. 巩固例题. 活动意图说明: 让学生在一定的数学活动中去体验、感受数学,掌握把一个图形按一定大小比例放大或缩小后,对应点的坐标变化的规律.培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值.从而更好地理解知识,让学生的认知结构得到不断的完善.
板书设计
课堂练习 【知识技能类作业】 必做题: 1.将平面直角坐标系中某个图案的各点坐标作如下变化,其中属于位似变换的是( ) A.将各点的纵坐标乘以2,横坐标不变 B.将各点的横坐标除以2,纵坐标不变 C.将各点的横坐标、纵坐标都乘以2 D.将各点的纵坐标减去2,横坐标加上2 答案C 2.如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标为( ) A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4) A 选做题: 3. △ABC 三个顶点坐标分别为 A (2,-2),B (4,-5),C (5,-2),以原点 O 为位似中心,将这个三角形放大为原来的 2 倍. 画法一: A' (4,-4), B' (8,-10), C' (10,-4); 画法二: A″ (-4,4), B″ (-8,10), C″ (-10,4). 【综合拓展类作业】 4.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B和点B′的坐标分别为B(3,1),B′(6,2). (1)请你根据位似的特征并结合点B的坐标变化回答下列问题: ①若点A的坐标为(2.5,3),则 点A′的坐标为_________; ②△ABC与△A′B′C′的相似比 为________;(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示) (1)(5,6) 1:2 (2)解:∵△ABC与△A′B′C′的相似比为1∶2, ∴S△ABC:S△A′B′C′=1:4. ∵△ABC的面积为m, ∴△A′B′C′的面积为4m.
作业布置 【知识技能类作业】 必做题: 1.关于对位似图形的表述,下列命题正确的是 .(只填序号) ①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比. ②③ 选做题: 2.如图,在直角坐标系中,作出五边形ABCDE的位似图形,使得新图形A1B1C1D1E1与原图形对应线段比为2∶1,位似中心是坐标原点O. 【综合拓展类作业】 3. 如图所示, 图中的小方格都是边长为1的正方形, △ABC与△A′B′C′是以O为位似中心的位似图形, 它们的顶点都在小正方形的顶点上. (1)画出位似中心点O; (2)直接写出△ABC与△A′B′C′的相似比; (3)以位似中心O为坐标原点, 以格线所在直线为坐标轴建立平面直角坐标系, 画出△A′B′C′关于点O 中心对称的△A″B″C″, 并直接写出△A″B″C″各顶点的坐标. (2)相似比为2∶1 (3)A″(6,0),B″(3,-2),C″(4,-4).
教学反思 27.3 位似(2)
21世纪教育网(www.21cnjy.com)