(共35张PPT)
两数和的奇偶性
人教版五年级下册
内容总览
学习目标
01
新知导入
02
探究新知
03
课堂练习
04
课堂总结
05
分层作业
06
目录
教学目标
通过运用“举例”“画图”等方法,学生发现两数和的奇偶性的规律,并运用规律解决生活中的一些简单问题。
让学生感悟数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
学生经历探索规律的过程,在活动中体验研究方法,提高推理能力。
新知导入
下面扑克牌上的数叫什么数?
自然数
新知导入
你能将上面的扑克分成两类?
自然数
奇 数
偶 数
新知导入
下面的游戏谁会赢?
规则:
两人各拿一摞扑克,
每人出一张求和,
和是奇数小刚赢,
和是偶数小林赢。
小刚 小林
新知导入
这个游戏中,谁一定会赢?为什么?
两数和的奇偶性
新知讲解
奇数与偶数的和是奇数还是偶数?
奇数与奇数的和是奇数还是偶数?
偶数与偶数的和是奇数还是偶数?
新知讲解
要求:
1、用你喜欢的方法解决上面的问题。
2、说说你的方法。
小组合作学习
新知讲解
展 示 汇 报
我先将上面的问题改成算式:
奇数+偶数=?
奇数+奇数=?
偶数+偶数=?
偶数
奇数
新知讲解
我找几个奇数偶数来试一试。
奇数+偶数=( )
奇数+奇数=( )
偶数+偶数=( )
5 + 8 = 13
7 + 8 = 15
奇数
5 + 7 = 12
9 + 7 = 16
偶数
8 + 12 = 20
12 + 24 = 36
偶数
9 + 8 = 17
11 + 8 = 19
11 + 7 = 18
13 + 7 = 20
32 + 12 = 44
40 + 24 = 64
奇数:
新知讲解
我用小方块摆一摆。
奇数+偶数:
偶数:
……
……
除以2余1
除以2余0
(没有余数)
……
奇数加偶数的和
除以2还余1,
所以,
奇数 + 偶数 = 奇数
奇数:
新知讲解
奇数+奇数:
奇数:
……
……
除以2余1
……
奇数加奇数的和
除以2余没有余数。
所以,
奇数 + 奇数 = 偶数
除以2余1
偶数:
新知讲解
偶数+偶数:
偶数:
……
……
除以2余0
除以2余0
……
偶数加偶数的和
除以2没有余数。
所以,
偶数 + 偶数 = 偶数
新知讲解
回顾与思考:这个结论正确吗?
奇数 + 奇数 = 偶数
奇数 + 偶数 = 奇数
偶数 + 偶数 = 偶数
319+602=921
1319+212=1531
2571+6328=9079
117+415= 532
1931+637=2568
1111+3333=4444
204+484=688
2468+428=2896
3004+6582=9586
新知讲解
思考并讨论:两数的差会怎样?
奇数+偶数=奇数
奇数+奇数=偶数
偶数+偶数=偶数
奇数-偶数=?
奇数-奇数=?
偶数-偶数=?
奇数
偶数
偶数
新知讲解
同奇同偶和(差)为偶,奇偶不同和(差)为奇。
课堂练习------基础题
1、不计算判断下列算式的结果是奇数还是偶数。
2065+2004 ( ) 678+9274 ( )
336518+131 ( ) 55722-806 ( )
4475-3451 ( ) 5562-3689 ( )
奇数
奇数
偶数
偶数
偶数
奇数
课堂练习------基础题
2、填一填。
1)5个奇数相加的和是( )。
2)100个偶数相加的和是( )。
3)8个奇数相加的和是( )。
4)7个偶数的和一定是( )。
奇数
偶数
偶数
偶数
课堂练习------基础题
3、一把钥匙开一把锁。
一个正方形的边长是一个奇数,这个正方形的周长一定是一个( )。
A 质数 B 奇数 C 偶数 D 无法确定
C
课堂练习------基础题
如果a+7=偶数,那么a一定是( )。
A 质数 B 合数 C 偶数 D 奇数
D
课堂练习------基础题
4、东东的年龄是一个奇数,东东爸爸的年龄是一个偶数。三年后,东东、爸爸的年龄是奇数还是偶数?
3是奇数
东东:奇数+奇数=偶数
爸爸:偶数+奇数=奇数
答:三年后,东东的年龄是偶数,爸爸的年龄是奇数。
课堂练习------提高题
5、在一次校友聚会上,久别重逢的老同学互相频频握手。请问:握过奇数次手的人数是奇数还是偶数 请说明理由。
答:握过奇数次手的人数是偶数。
因为一个人和其他人握手,这个人握手的次数比总人数少1,奇数-1=偶数,所以握过奇数次手的人数是偶数。
课堂练习------拓展题
6、7只杯子全部杯口朝上放在桌子上,每次翻转其中的2只杯子,能否经过若干次翻转,使得7只杯子全部杯口朝下
答:不可能使7只杯子全部杯口朝下。
一开始杯口朝上的杯子有7只,是奇数;第一次翻转后,杯口朝上的变为5只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。类似的分析可以得到,无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数0。也就是说,不可能使7只杯子全部杯口朝下。
课堂总结
说一说:
通过刚才的学习,你有什么收获?
奇数+偶数=奇数
奇数+奇数=偶数
偶数+偶数=偶数
奇数-偶数=奇数
奇数-奇数=奇数
偶数-偶数=偶数
板书设计
奇数+偶数=奇数
两数和的奇偶性
奇数+奇数=偶数
偶数+偶数=偶数
列举法
看余数
数形结合
作业布置
要认真完成呦!
作业布置------知识技能类
1、填一填。
1)从1到100这100个数中,共有( )个偶数,( )
个奇数。奇数之和为( ),偶数之和为( )。
2)偶数+偶数=( ),奇数+奇数=( ),
偶数-偶数=( ), 奇数-奇数=( )。
50
50
2500
2550
偶数
偶数
偶数
偶数
2、选择正确答案。
作业布置------知识技能类
1)一个奇数减去比它小的偶数,差一定是( )。
A 奇数 B 偶数 C 质数 D 合数
2)一个偶数如果( ),结果一定是奇数。
A 乘5 B 加上9 C 减去2 D 加上6
A
B
作业布置------知识技能类
3、动手翻一翻。
(1)拿一枚硬币正面朝上放在桌上,翻动1次,正面朝
( );翻动2次,正面朝( ).
(2)翻动6次,正面朝( );翻动19次,正面朝( )。
(3)翻动奇数次,正面朝( );翻动偶数次,正面朝
( )。
下
上
上
下
下
上
作业布置------知识技能类
4、不计算,下式的和是奇数还是偶数?为什么?
1+2+3+4+…+1997+1998。
答:1~1998中共有999个奇数,999是奇数,奇数个奇数之和是奇数。所以,本题要求的和是奇数。
作业布置------选做题
5、用0~9这十个数码组成五个两位数,每个数字只用一次,要求它们的和是奇数,那么这五个两位数的和最大是多少
答:要使和最大,十位应是5、6、7、8、9,个位是0,1,2,3,4,但和就会是一个偶数,于是把4和5交换,和为:
90+80+70+60+40+5+3+2+1+0=351
作业布置------综合实践类
6、运用今天探索规律的方法,课后探究:两个自然数的乘积,什么情况下是奇数?什么情况下是偶数?
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
2.6 两数和的奇偶性 教学设计
一、教学目标
1、学习目标描述:通过运用“举例”“画图”等方法,使学生发现两数和的奇偶性的规律,并运用规律解决生活中的一些简单问题。
2、学习内容分析:《两数和的奇偶性》是人教版小学数学五年级下册第二单元第六课时的内容,本节内容是在学生学习奇数和偶数、质数与合数的基础上进行教学的。教材根据奇数、偶数相加的三种情况,提出三个问题即三个猜想。通过举例、说理、图示这三种方法增强学生对结论的理解和验证。同时在探究过程中,丰富学生解决问题的策略。
3、学科核心素养分析:学生经历探索规律的过程,在活动中体验研究方法,提高推理能力。让学生感悟数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
二、教学重、难点
1、重点:使学生发现并掌握数两数和的奇偶性变化规律。
2、难点:理解奇数偶数在图形上的特点,并解决生活中的一些简单问题。
三、教学过程
教学目标 教学活动 设计意图 效果评价
导入新课 任务一:导入新课。1、下面扑克牌上的数叫什么数?思考:怎样求一个数的因数?指名说一说。教师总结。2、你能将上面的扑克分成两类?学生独立分一分。教师总结:3、下面的游戏谁会赢?规则:两人各拿一摞扑克,每人出一张求和,和是奇数小刚赢,和是偶数小林赢。师:这个游戏中,谁一定会赢?为什么?今天我们就来研究这个问题。板书课题:两数和的奇偶性。 通过练习,复习自然数、奇数和偶数的概念。为本课内容的学习做准备。 教师观察学生的练习参与程度,对积极参加表现突出的学生给予及时的鼓励与表扬。
学习两数和的奇偶性。 任务二:学习两数和的奇偶性。1、出示例题2: 奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和是奇数还是偶数? 2、小组合作学习:要求:1)用你喜欢的方法解决上面的问题。2)说说你的方法。3、展示汇报。生1:我先将上面的问题改成算式: 奇数+偶数=?奇数+奇数=?偶数+偶数=? 生2:我找几个奇数偶数来试一试。 1)奇数+偶数=?5 + 8 = 13 7 + 8 = 15 9 + 8 = 17 11 + 8 = 19 所以:奇数+偶数=奇数 2)奇数+奇数=( ) 5 + 7 = 12 9 + 7 = 16 11 + 7 = 18 13 + 7 = 20 所以:奇数+奇数=偶数 3)偶数+偶数=( ) 8 + 12 = 20 12+24=36 32 + 12 = 44 40 + 24 = 64 偶数+偶数=偶数 生3:我用小方块摆一摆。 1) 所以:奇数+偶数=奇数 2) 所以:奇数+奇数=偶数 3) 所以:偶数 + 偶数 = 偶数 4、回顾与思考:这个结论正确吗?可以用较大一些的数试一试。 学生独立完成。 5、考并讨论:两数的差会怎样? 学生讨论,展示汇报。教师总结: 奇数-偶数=奇数奇数-奇数=偶数偶数-偶数=偶数 师:为了帮助同学们记忆这个规律,老师总结了一句话:同奇同偶和(差)为偶,奇偶不同和(差)为奇。 希望能帮到大家。 通过运用“举例”“画图”等方法,使学生发现两数和的奇偶性的规律,并运用规律解决生活中的一些简单问题。在活动中体验研究方法,提高推理能力。 老师对积极参与、表达能力强的同学予以表扬,对于学困生及时鼓励。
迁移运用 任务三:课堂练习基础题:1、不计算判断下列算式的结果是奇数还是偶数。 2065+2004 ( ) 678+9274 ( )336518+131 ( ) 55722-806 ( ) 4475-3451 ( ) 5562-3689 ( ) 2、填一填。1)5个奇数相加的和是( )。2)100个偶数相加的和是( )。3)8个奇数相加的和是( )。4)7个偶数的和一定是( )。 3、一把钥匙开一把锁。一个正方形的边长是一个奇数,这个正方形的周长一定是一个( )。 A 质数 B 奇数 C 偶数 D 无法确定如果a+7=偶数,那么a一定是( )。 A 质数 B 合数 C 偶数 D 奇数4、东东的年龄是一个奇数,东东爸爸的年龄是一个偶数。三年后,东东、爸爸的年龄是奇数还是偶数? 引导学生能够在课堂练习的完成过程中对要点知识加深巩固,有效应用。 分层挑选学生的作答,及时了解不同层次学生的课堂效果,收集本节课学生知识吸收的反馈信息。
提高题:5、在一次校友聚会上,久别重逢的老同学互相频频握手。请问:握过奇数次手的人数是奇数还是偶数 请说明理由。
拓展题: 6、7只杯子全部杯口朝上放在桌子上,每次翻转其中的2只杯子,能否经过若干次翻转,使得7只杯子全部杯口朝下 教师巡视,指导学困生。
课堂小结 任务五:课堂总结:通过本节课的学习你有什么收获?生1:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数生2:奇数-偶数=奇数奇数-奇数=奇数偶数-偶数=偶数 通过师生回顾全课,说说本课所学内容,总结知识,升华认识。 对于听课认真,积极参与的同学进行表扬。
作业设计 知识技能类1、填一填。1)从1到100这100个数中,共有( )个偶数,( ) 个奇数。奇数之和为( ),偶数之和为( )。2)偶数+偶数=( ),奇数+奇数=( ), 偶数-偶数=( ), 奇数-奇数=( )。2、选择正确答案。1)一个奇数减去比它小的偶数,差一定是( )。 A 奇数 B 偶数 C 质数 D 合数2)一个偶数如果( ),结果一定是奇数。 A 乘5 B 加上9 C 减去2 D 加上6动手翻一翻。 (1)拿一枚硬币正面朝上放在桌上,翻动1次,正面朝 ( );翻动2次,正面朝( ).(2)翻动6次,正面朝( );翻动19次,正面朝( )。(3)翻动奇数次,正面朝( );翻动偶数次,正面朝 ( )。4、不计算,下式的和是奇数还是偶数?为什么? 1+2+3+4+…+1997+1998。 选做题:5、猜一猜。用0~9这十个数码组成五个两位数,每个数字只用一次,要求它们的和是奇数,那么这五个两位数的和最大是多少 综合实践类:6、运用今天探索规律的方法,课后探究:两个自然数的乘积,什么情况下是奇数?什么情况下是偶数?
板 书设 计 两数和的奇偶性奇数+偶数=奇数 奇数+奇数=偶数 偶数+偶数=偶数
奇数
偶数
列举法
看余数
数形结合
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
《因数与倍数》 单元整体设计
一、单元主题解读
(一)课程标准要求分析
新课标关于本单元的要求,主要表现在“内容要求”“学业要求”“教学提示”三个方面。
内容要求:
知道2、3、5的倍数的特征,了解奇数、偶数、质数(或素数)和合数。
学业要求:
能找出2、3、5的倍数。在1—100的自然数中:能找出10以内自然数的所有倍数,能找出一个自然数的所有因数,能判断一个自然数是否是质数和合数。
教学提示:
数的认识教学要引导学生根据数的意义,用举例、计算、归纳等方法,探索2、3、5的倍数的特征,理解奇数和偶数、质数和合数,形成推理意识。
本单元培养学生核心素养主要表现为:分析能力、概括能力、抽象能力、推理能力、应用意识。
课标解读:
“因数与倍数”是小学五年级的内容,但整数、自然数的概念贯穿小学阶段的始终。本单元主要让学生掌握因数与倍数的概念、2、3、5倍数的特征,质数与合数的概念,并能在100以内自然数中,找出10以内数的所有倍数,找出一个自然数的所有因数,能判断一个自然数是否是质数和合数,能判断两个数和的奇偶性。按照《课程标准》的要求,教师应该鼓励学生,用自己喜欢的方法,探索要掌握的规律,为以后公因数、公倍数、通分、约分的学习做准备。
(二)单元教材内容分析
本单元内容涉及因数、倍数、质数、合数、奇数、偶数等概念,是初等数论的基础知识。是小学教材中的重要内容。一方面这部分内容是学习公因数、公倍数,特别是约分和通分的重要基础。另一方面不仅能丰富学生有关整数的知识,加深对整数与整数除法的认识,也有助于发展学生的数学思维。
单元学习前后内容联系:
(三)学生认知情况
学习本单元内容之前,学生不仅已经掌握了大量的整数知识(包括整数的认识、整数四则运算),而且已经具备了大量整除和有余数除法的知识。同时五年级学生已经积累了探索数字规律的基本方法和策略,但还不能灵活地、有序地思考,不能用自己的语言表述规律。因此在教学过程中需要教师适时地引导。
二、单元目标拟定
1.理解因数和倍数的概念,能举例说明。
2.掌握2、3、5倍数的特点,能准确判断2、3、5的倍数,促进数感的发展。
3.掌握质数、合数的概念,能找出100以内的质数与合数,能熟练判断20以内的质数与合数。
4.知道有关概念间的关系,发展学生的抽象能力、推理能力。
5.了解奇数、偶数的概念,能准确判断奇数、偶数,以及和的奇偶性。
三、关键内容确定
(一)教学重点
理解因数、倍数,质数、合数、奇数、偶数的概念,掌握2、3、5倍数的特征,掌握两数和的奇偶性。
(二)教学重难点
使学生掌握因数、倍数、质数、合数等概念,知道相关概念间的联系和区别。
四、单元整合框架及说明
整合指导思想定位:
会用数学的眼光观察现实世界
会用数学的思维思考现实世界
会用数学的语言表达现实世界
这是数学课程的核心素养内涵。
本单元主要内容包括三部分:因数与倍数,2、3、5倍数的特征,质数与合数。
本单元教材的具体编排结构如下:
本单元教科书编写的特点:*
(一)用归纳法呈现概念。
本单元概念较多,而概念的建立,需要经历由具体到一般的抽象概括过程。例:因数与倍数的概念的建立,首先观察9个算式,找出异同,抽象出“有余数”和“没有余数”两种。由整除的本质过渡到因数和倍数的概念。又如:指数与合数,首先观察20以内数的因数,找出相同点和不同点,然后抽象出有两个因数的为质数,有三个或三个以上因数的为合数。这些过程,对发展学生的抽象能力、推理能力、概括总结能力都很有益。
(二)注重概念间关系的梳理。
本单元概念较多,内容比较抽象,学生理解其概念比较困难。因此教材在编写时很注重概念间关系的梳理。例如因数与倍数的概念,在呈现这两个概念的时候,强调被除数是除数的倍数,除数是被除数的因数,注重体现两者之间的互相依存的关系。又如:奇数和偶数,以是否是2的倍数为标准,可以将自然数分为偶数、奇数两类,用“2”把两个概念连接起来。质数与合数:以所含因数的个数为标准,可以将大于0的自然数分为1、质数、合数三类等,这样有效的帮助学生把概念串起来,更利于记忆。
(三)给学生创造探索空间。
《课程标准》指出,学生在第三学段尝试在真实情境中发现和提出问题,探索运用基本的数量关系。本单元教材在安排各类概念的时候,给学生创造了自主探索的空间。例如:因数和倍数的概念,首先让学生计算、分类,然后总结出概念。又如质数与合数的概念,也是先让学生找出20以内数的因数,然后分类,总结概括。还有在练习中出现让学生自己探索6的倍数的特征等。都是给学生创造了自主探究探索的空间,从而对知识的理解更加深刻,记忆更加牢固。
五、单元课时规划
□课程标准 教材章节 □知识结构
课程内容模块 数与运算 □方程与代数 □图形与几何 □数据整理与概率统计
单元数量 2
单元主题 单元名称 主要内容 课时
数与代数 因数与倍数 因数与倍数 1
因数与倍数的求法 1
2、5的倍数的特征 1
3的倍数的特征 1
质数与合数 1
两数和的奇偶性 1
重点渗透的数学思想方法 抽象 □符号化 分类 集合 对应□演绎 归纳 □类比 转化 数形结合 □极限□模型 □方程 □函数 □统计分析 综合 比较 □假设 □其他
课时 学习目标 评价形式 评价标准
2.1《因数与倍数》 目标:初步了解因数和倍数的意义,能说清楚谁是谁的因数,谁是谁的倍数,理解因数和倍数的互依关系。 任务一:导入新课。 她们是什么关系?任务二:学习因数和倍数的概念及其之间互相依存的关系。 口算下面各题。 1、通过说一说,知道生活中很多关系是相互依存的。通过引导学生探索方法,学生能够理解因数和倍数的概念及其之间互相依存的关系。
2.2《因数和倍数的求法》 目标:通过学习,学生能掌握一个数的因数和倍数的求法,了解一个数的因数的个数是有限的,倍数的个数是无限的。。 任务一:复习因数和倍数的概念。 说一说下面各组数的相互关系。任务二:学习因数的求法。 18有哪些因数?任务三:学习倍数的求法。 2的倍数有哪些? 1. 通过练习,说出因数和倍数之间的关系,说出因数和倍数的互依性。2.通过学习,学生掌握求一个数因数的方法,并知道一个数的因数最小是1,最大是它本身,而且因数的个数是有限的。3. 通过学习,生掌握求一个数倍数的方法,并知道一个数的倍数最小是它本身,没有最大倍数,而且倍数的个数是无限的。
2.3《积的变化规律》 目标:经历2、5的倍数的探过程,理解2、5倍数的特征;了解奇数、偶数的含义,能判断一个非零自然数是奇数还是偶数。 任务一:复习因数的求法。 填一填。任务二:学习2和5的倍数的特点及奇数和偶数的概念。 把上表中5的倍数圈起来,看看5的倍数有什么特征? 1.通过练习,复习学生会找一数的因数和倍数。2. 通过学习,学生掌握2、5倍数的特征;了解奇数、偶数的含义,能判断一个非零自然数是奇数还是偶数。
2.4《3的倍数的特征》 目标:通过猜想、操作、举例、验证等活动,学生认识3的倍数的特征,能够正确地判断一个数是不是3的倍数。 任务一:复习2、5倍数的特点。 207是2的倍数吗?是5的倍数吗?任务二:学习用单价、数量和总价之间的关系解决问题。 1. 通过练习,能说出2和5的倍数的特点,奇数和偶数的特点。2. 通过学习,使学生能掌握3的倍数的特征;能判断一个非零自然数是否是3的倍数。
2.5《质数与合数》 目标:通过学习,学生掌握质数和合数的意义,知道100以内的质数,熟悉20以内的质数。能正确判断一个常见数是质数还是合数。 任务一:复习一个数的因数,学习质数和倍数的概念。 32的因数有哪些?任务二:学习100以内的质数有哪些。 找出100以内的质数。 1. 通过学习,学生能写出32的因数,理解质数合数的定义。2. 通过学习,学生知道100以内的质数,熟悉20以内的质数。能正确判断一个常见数是质数还是合数。
2.6《两数和的奇偶性》 目标:通过运用“举例”“画图”等方法,使学生发现两数和的奇偶性的规律,并运用规律解决生活中的一些简单问题。 任务一:复习奇数和偶数的概念。 下面扑克牌上的数叫什么数?任务二:学习两数和的奇偶性。奇数与偶数的和是奇数还是偶数? 1. 通过复习,能掌握奇数、偶数的概念,能判断一个数是奇数还是偶数。2.通过学习,学生能掌握两数和的奇偶性的规律,并运用规律解决生活中的一些简单问题。
以后学习的相关内容。
五年级下册第4单元
·最大公因数
·最小公倍数
·通分和约分
五年级下册第六单元
·异分母分数相加减
本单元学习内容。
·因数和倍数
·2、3、5倍数的特征
·质数与合数
已经学过的相关内容。
·在不同阶段各年级学习的大量的整数知识(包括整数的认识,整数的四则运算)
活动一:导入新课。
活动二:学习因数和倍数的概念及其之间互相依存的关系。
活动二:2和5的倍数的特点及奇数和偶数的概念。
活动二:学习3的倍数的特征。
问题1:什么是因数和倍数?
任务一:因数与倍数。
活动一:导入新课。
问题2:怎样找一个数的因数和倍数?
活动二:学习一个数因数的求法。
活动三:学习一个数倍数的求法。
活动一:练习导入新课。
问题1:2、5的倍数有什么特征
问题2:两数的和是奇数还是偶数?
问题1:什么是质数?什么是合数?
因数与倍数
1.1
任务二:2、3、5倍数的特征。
活动一:练习,导入新课。
问题2:3的倍数有什么特征?
活动一:复习奇数和偶数的概念,导入新课。
活动二:学习两数和的奇偶性。
活动一:学习质数、和数的概念。
活动二:学习100以内的质数与合数。
任务三:质数与合数。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)