人教版八上数学第十五章分式第1节分式参考教案(2份打包)

文档属性

名称 人教版八上数学第十五章分式第1节分式参考教案(2份打包)
格式 zip
文件大小 66.8KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-06-10 16:38:31

文档简介

§15.1.2 分式的基本性质
一、教学目标
1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
2.通过分式的恒等变形提高学生的运算能力.
3.渗透类比转化的数学思想方法.
二、教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.
三、教学方法
分组讨论.
四、教学手段
幻灯片.
五、教学过程
(一)复习提问
1.分式的定义?
2.分数的基本性质?有什么用途?
(二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
2.加深对分式基本性质的理解:
例2 填空:
(1) ,
解:∵x≠0,
同理可化简第二个.
(2)
学生自己解答.
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
练习1:
化简下列分式(约分)
例3(1) (2) (3)
教师给出定义:
把分式分子、分母的公因式约去,这种变形叫分式的约分.
问:分式约分的依据是什么?
分式的基本性质
在化简分式 时,小颖和小明的做法出现了分歧:
小颖: 小明:
你对他们俩的解法有何看法?说说看!
教师指出:一般约分要彻底, 使分子、分母没有公因式.
彻底约分后的分式叫最简分式.
练习2(通分):
把各分式化成相同分母的分式叫做分式的通分.
例4:(1) 与 (2) 与
解:(1)最简公分母是
(2)最简公分母是(x-5)(x+5)
(三)课堂小结
1.分式的基本性质.
2.性质中的m可代表任何非零整式.
3.注意挖掘题目中的隐含条件.
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.15.1分式
15.1.1从分数到分式
一、 教学目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,能熟练地求出分式有意义的条件.
二、重点、难点
1.重点:理解分式有意义的条件.
2.难点:能熟练地求出分式有意义的条件.
三、课堂引入
1.让学生填写P127[思考],学生自己依次填出:,,,.
2.学生看问题:一艘轮船在静水中的最大航 ( http: / / www.21cnjy.com )速为30 km/h,它沿江以最大航速顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为v km/h.
轮船顺流航行90 km所用的时间为小时,逆流航行60 km所用时间小时,所以=.
3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
四、例题讲解
P128例1. 当下列分式中的字母为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母的取值范围.
[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案] (1)m=0 (2)m=2 (3)m=1
五、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的值为0?
(1) (2) (3)
六、课后练习
1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与y的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
七、答案:
五、1.整式:9x+4, , 分式: , ,
2.(1)x≠-2 (2)x≠ (3)x≠±2
3.(1)x=-7 (2)x=0 (3)x=-1
六、1.18x, ,a+b, ,; 整式:8x, a+b, ;
分式:,
2.x =
3.x=-1
课后反思: