人教版八上数学第十五章 分式第3节分式方程参考教案(2份打包)

文档属性

名称 人教版八上数学第十五章 分式第3节分式方程参考教案(2份打包)
格式 zip
文件大小 34.8KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-06-10 16:41:18

文档简介

15.3 分式方程(1)
一、教学目标
1.知识目标:
(1)理解分式方程的意义;
(2)了解解分式方程的基本思路和解法;
(3)理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.
2.能力目标:
经历“实际问题---分式方程---整式方程”的过程,发展学生分析问题﹑解决问题的能力,渗透数学的转化思想,培养学生的应用意识.
3.情感目标:
在活动中培养学生乐于探究﹑合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.
二、教学重点和难点
1.重点:解分式方程的基本思路和解法.
2.难点:理解解分式方程时可能无解的原因.
3.疑点及分析和解决办法:解分式方程的基 ( http: / / www.21cnjy.com )本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.
三、教学过程
(一)创设情境,导入新课
问题:一艘轮船在静水中的最大航速为30 k ( http: / / www.21cnjy.com )m/h,它以最大航速沿江顺流航行90 km所用时间, 与以最大航速逆流航行60 km所用时间相等, 江水的流速为多少
分析:设江水的流速为v km/h,
则轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时。可列方程=
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.
(二)探究新知:
1.教师提出下列问题让学生探究:
(1)方程 = 与以前所学的整式方程有何不同
(2) 什么叫分式方程
(3)如何解分式方程 = 呢 怎样检验所求未知数的值是原方程的解
(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗
(学生思考﹑讨论后在全班交流)
2.根据学生探究结果进行归纳:
(1) 分式方程的定义(板书):
分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程
练习:判断下列各式哪个是分式方程.
在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.
(2)解分式方程= 的基本思路是:将分式方程化为整式方程.
具体做法是:“去分母”.即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.
3.仿照上面解分式方程的做法,尝试解分式方程,并检验所得的解,你发现了什么 与你的同伴交流.
4.思考:上面两个分式方程中,为什么 = ①去分母后所得整式方程的解就是①的解,而②去分母后所得整式方程的解却不是②的解呢 学生分组讨论上述结果产生的原因,并互相交流.
5.归纳:
(1)增根:将分式方程变为整式方程时,方程 ( http: / / www.21cnjy.com )两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根
(2)解分式方程必须进行检 ( http: / / www.21cnjy.com )验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
(三)巩固练习:
1.在方程
① ②
③ ④
中是分式方程的有( )
A.①和② B.②和③ C.③和④ D.④和①
2.解分式方程: (1) (2)
(四)课堂小结:
1.通过本节课的学习,你有哪些收获
2.在本节课的学习过程中,你有什么体会 与同伴交流.
引导学生总结得出:
解分式方程的一般步骤:
(1).在方程的两边都乘以最简公分母,约去分母,化为整式方程.
(2).解这个整式方程.
(3).把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.
四.板书设计:
15.3 分式方程(1)
一、分式方程的定义分母里含有未知数的方程叫分式方程= 二. 解分式方程的一般步骤:(1).在方程的两边都乘以最简公分母,约去分母,化为整式方程.(2).解这个整式方程.(3).把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去. 三、解分式方程学生扮演区
五.教学反思15.3分式方程(二)
一、教学目标:
1.会分析题意找出等量关系.
2.会列出可化为一元一次方程的分式方程解决实际问题.
二、重点、难点
1.重点:利用分式方程组解决实际问题.
2.难点:列分式方程表示实际问题中的等量关系.
三、例、习题的意图分析
本节的例3不同于旧教材的应用题有两 ( http: / / www.21cnjy.com )点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.
例 4是一道行程问题的应用题也与旧教材的 ( http: / / www.21cnjy.com )这类题有所不同(1)本题中涉及到的列车平均提速v km/h,提速前行驶的路程为s km.用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s km所用的时间,提速后列车的平均速度设为未知数x km/h,以及提速后列车行驶(x+50) km所用的时间.
这两道例题都设置了带有探究性的分析, ( http: / / www.21cnjy.com )应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.
教材中为学生自己动手、动脑解题搭建了一 ( http: / / www.21cnjy.com )些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.
四、例题讲解
例3 分析:本题是一道工程问 ( http: / / www.21cnjy.com )题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.
等量关系是:甲队单独做的工作量+两队共同做的工作量=1
例4 分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间
五、随堂练习
1. 学校要举行跳绳比赛,同学们都积极 ( http: / / www.21cnjy.com )练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.
2. 一项工程要在限期内完成.如果第一组单 ( http: / / www.21cnjy.com )独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天
3. 甲、乙两地相距19千米 ( http: / / www.21cnjy.com ),某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.
六、课后练习
1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快 ,结果于下午4时到达,求原计划行军的速度。
2.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?
3.甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器个加入等量水,使它们的浓度相等,那么加入的水是多少升?
七、答案:
五、1. 15个,20个 2. 12天 3. 5千米/时,20千米/时
六、1. 10千米/时 2. 4天,6天 3. 20升
课后反思: