2024 年九年级中考数学 专项练习:一次函数背景下的存在性问题(无答案)

文档属性

名称 2024 年九年级中考数学 专项练习:一次函数背景下的存在性问题(无答案)
格式 docx
文件大小 316.7KB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2024-01-12 18:33:40

图片预览

文档简介

2023-2024学年九年级中考数学+专项练习:一次函数背景下的存在性问题
1、如图,在平面直角坐标系中,直线y=﹣x+b与x、y轴分别相交于点A、B,与直线y=x+2交于点D(3,m),直线y=x+2交x轴于点C,交y轴于点E.
(1)若点P是y轴上一动点,连接PC、PD,求当|PC﹣PD|取最大值时,P点的坐标.
(2)在(1)问的条件下,将△COE沿x轴平移,在平移的过程中,直线CE交直线AB于点M,则当△PMA是等腰三角形时,求BM的长.
2.在平面直角坐标系xOy中,直线l1:y=k1x+2与x轴、y轴分别交于点A、B两点,OA=OB,直线l2:y=k2x+b经过点C(1,﹣),与x轴、y轴和线段AB分别交于点E、F、D三点.
(1)求直线l1的解析式;
(2)如图①:若EC=ED,求点D的坐标和△BFD的面积;
(3)如图②:在坐标轴上是否存在点P,使△PCD是以CD为底边的等腰直角三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
3、如图1,直线l:y=x+2与x轴交于点A,与y轴交于点B.已知点C(﹣2,0).
(1)求出点A,点B的坐标.
(2)P是直线AB上一动点,且△BOP和△COP的面积相等,求点P坐标.
(3)如图2,平移直线l,分别交x轴,y轴于交于点A1B1,过点C作平行于y轴的直线m,在直线m上是否存在点Q,使得△A1B1Q是等腰直角三角形?若存在,请直接写出所有符合条件的点Q的坐标.
4.如图,平面直角坐标系中,直线EA⊥x轴于点A,A(100,0),B,C分别为线段OA和射线AE上的一点,若点B从点A出发向点O运动,同时点C从点A出发沿射线AE方向运动,二者速度之比为2:3,运动到某时刻同时停止,点D在y轴正半轴上,若使△OBD与△ABC全等,则D点的坐标为    .
5.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.
(1)求直线BC的解析式;
(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);
(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.
6.如图,在平面直角坐标系中,直线AB经过点A(,)和B (2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.
(1)求直线AB的解析式;
(2)连接OA,试判断△AOD的形状;
(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.
7.如图,一次函数y1=x+m(m>0)的图象与x轴交于点A,一次函数y2=nx+2的图象与x轴交于点B,点P()是两函数图象的交点.
(1)求函数y1、y2的关系式;
(2)若∠PBA=64°,求∠APB的度数;
(3)求四边形PCOB的面积;
(4)在x轴上,是否存在一点Q,使以点Q、B、C为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
8.如图,平面直角坐标系中,一次函数的图象与轴、轴分别交于、两点,点是线段上的一个动点(不与,重合),连接.
(1)求,两点的坐标;
(2)求的面积与之间的函数关系式,并写出自变量的取值范围;
(3)当的面积时,第一象限内是否存在一点,使是以为直角边的等腰直角三角形,若存在,请求出点的坐标,若不存在,请说明理由.
9.如图,已知直线:交轴于点,交轴于点,直线交轴于点(,),请解答下列问题:
(1)点的坐标为,点的坐标为_______;
(2)如图1,作射线轴,交直线于点,请说明:平分;
(3)点为直线上的一个动点,连接,若,求点的坐标;
(4)过作直线垂直于轴,若是直线上的一个动点,在坐标平面内是否存在点,使以、、、为顶点的四边形是矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.
10.如图,在平面直角坐标系中,直线BC:交x轴于点B,交y轴于点C,直线AD与直线BC互相垂直,垂足为点E,且CD=1.
(1)求直线AD解析式.
(2)点P从点B出发沿线段BO方向以1个单位/秒的速度向终点O运动,设△AEP的面积为S,运动时间为t,求S与t的函数关系式,并直接写出自变量t的取值范围.
(3)在(2)的条件下,点P运动的同时点Q从C点出发沿射线CO方向以3个单位/秒的速度运动,当点P到达终点时,点Q也停止运动,过点P作x轴垂线交BC于点F,连接FQ和EQ,平面内是否存在一点M,使得以点E,Q,F,M为顶点且以EQ为边的四边形是菱形?若存在,求出此时t值和M点坐标;若不存在,说明理由.
11.如图,一次函数的图象与反比例函数的图象交于点,与y轴交于点B,与x轴交于点.
(1)求k与m的值;
(2)点为x轴正半轴上的一点,且的面积为,求a的值.
(3)在(2)的条件下,在平面内是否存在一点Q,使以点A,B,P,Q为顶点的四边形为平行四边形?若存在,请直接写出点Q的坐标;不存在,请说明理由.
12.如图,直线y=x+2与x轴交于点A,与y轴交于点B,直线y=-2x+8与x轴交于点C,与y轴交于点D,与直线AB交于点E.
(1)求△DBE的面积;
(2)P,Q分别在AB和CD上,M,N在y轴上,当以P,Q,M,N为顶点的四边形为正方形时,直接写出点P的坐标.
13.如图,在平面直角坐标系中,直线与x轴交于点,与直线交于点,点E为x轴上一个动点.
(1)求直线的解析式;
(2)若点E的坐标为,过点E作直线轴,分别交直线,于点F,G.求的面积;
(3)若以点C、A、E为顶点的三角形为直角三角形,求点E的坐标.
14.(2023 开发区二模)如图,在平面直角坐标系中,一次函数y=﹣x+n图象与正比例函数y=2x的图象交于点A(m,4).
(1)求m,n的值;
(2)设一次函数y=﹣x+n的图象与x轴交于点B,与y轴交于点C,求点B,点C的坐标;
(3)直接写出使函数y=﹣x+n的值小于函数y=2x的值的自变量x的取值范围.
(4)在x轴上是否存在点P使△PAB为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
15.如图,等腰在平面直角坐标系上,.点从原点出发,以每秒1个单位的速度沿轴的正方向运动,过点作直线,直线与射线相交于点.
(1)点的坐标为____________;
(2)点的运动时间是秒.
①当时,在直线右侧部分的图形的面积为,求(用含的式子表示);
②当时,点在直线上且是以为底的等腰三角形,若,求的值.
16.如图,在平面直角坐标系xOy中,点A(6,0),B(0,8),P,Q是两个动点,其中点P以每秒2个单位长度的速度沿折线AOB(按照A﹣O﹣B)的路线运动,点Q以每秒5个单位长度的速度沿折线BOA(按照B﹣O﹣A)的路线运动,运动过程中点P和Q同时开始,而且都要运动到各自的终点时停止.设运动时间为t秒,直线l经过原点O,且l∥AB,过点P,Q分别作l的垂线段,垂足为E,F,当△OPE与△OQF全等时,t的值为    .
同课章节目录