岳阳县四中 高二数学备课组
§1.1.1变化率问题
教学目标
1.知识与技能:通过对实例分析,理解平均变化率的实际意义与数学意义;掌握平均变化率在实际生活中
的运用以及在函数中的运用
2.过程与方法:感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程;
理解平均变化率的意义,初步了解“以直代曲”的数学思想,为后续建立瞬时变化率和
导数的数学模型提供丰富的背景
3.情感、态度与价值观:体会平均变化率的广阔实际背景,促进学生全面认识数学的价值,使学生对变
量数学的思想方法有新的感悟;进一步发展学生的数学思维能力,感受数学产生和发展的
规律以及人类智慧和文明的传承,体会数学的博大精深以及学习数学的意义
教学重点:平均变化率的概念、函数在某点处附近的平均变化率;
教学难点:平均变化率的概念.
教学过程:
一.创设情景
为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;
二、求曲线的切线;
三、求已知函数的最大值与最小值;
四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.
二.新课讲授
(一)问题提出
问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢
气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是
如果将半径r表示为体积V的函数,那么
分析: ,
1 当V从0增加到1时,气球半径增加了
气球的平均膨胀率为
2 当V从1增加到2时,气球半径增加了
气球的平均膨胀率为
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态
思考计算:和的平均速度
在这段时间里,;
在这段时间里,
探究:计算运动员在这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,
所以,
虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
(二)平均变化率概念:
1.上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率
2.若设, (这里看作是对于x1的一个“增量”可用x1+代替x2,同样)
3. 则平均变化率为
思考:观察函数f(x)的图象
平均变化率表示什么
直线AB的斜率
三.典例分析
例1.已知函数f(x)=的图象上的一点及临近一点,则 .
解:,
∴
例2. 求在附近的平均变化率。
解:,所以
所以在附近的平均变化率为
四.课堂练习
1.质点运动规律为,则在时间中相应的平均速度为 .
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.
3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.
五.回顾总结
1.平均变化率的概念
2.函数在某点处附近的平均变化率
六.布置作业
§1.1.2导数的概念
教学目标:
1.知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际
背景,知道瞬时变化率就是导数。
2.过程与方法:通过动手计算培养学生观察、分析、比较和归纳能力;通过问题的探究体会逼近、类比、以已
知探求未知、从特殊到一般的数学思想方法
3.情感、态度与价值观:通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生
学习数学的兴趣.
教学重点:瞬时速度、瞬时变化率的概念、导数的概念;
教学难点:导数的概念.
教学过程:
一.创设情景
(一)平均变化率
(二)探究:计算运动员在这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,
所以,
虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
二.新课讲授
1.瞬时速度
我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:
思考:当趋近于0时,平均速度有什么样的变化趋势?
结论:当趋近于0时,即无论从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值.
从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运动员在时的瞬时速度是
为了表述方便,我们用
表示“当,趋近于0时,平均速度趋近于定值”
小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。
2 导数的概念
从函数y=f(x)在x=x0处的瞬时变化率是:
我们称它为函数在出的导数,记作或,即
说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率
(2),当时,,所以
三.典例分析
例1.(1)求函数y=3x2在x=1处的导数.
分析:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx)2
再求再求
解:法一 定义法(略)
法二:
(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数.
解:
例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.
解:在第时和第时,原油温度的瞬时变化率就是和
根据导数定义,
所以
同理可得:
在第时和第时,原油温度的瞬时变化率分别为和5,说明在附近,原油温度大约以的速率下降,在第附近,原油温度大约以的速率上升.
注:一般地,反映了原油温度在时刻附近的变化情况.
四.课堂练习
1.质点运动规律为,求质点在的瞬时速度为.
2.求曲线y=f(x)=x3在时的导数.
3.例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.
五.回顾总结
1.瞬时速度、瞬时变化率的概念
2.导数的概念
6.布置作业
§1.1.3导数的几何意义
教学目标:
1、知识目标:了解平均变化率与割线斜率之间的关系;理解曲线的切线的概念;通过函数的图像直
观地理解导数的几何意义,并会用导数的几何意义解题;
2、能力目标:培养学生抽象思维能力.
3、情感目标:让学生通过掌握高等数学的一些基本知识,激发他们对未来学习高等数学的兴趣
教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
教学难点:导数的几何意义.
教学过程:
一.创设情景
(一)平均变化率、割线的斜率
(二)瞬时速度、导数
我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数的几何意义是什么呢?
二.新课讲授
(一)曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?
我们发现,当点沿着曲线无限接近点P即Δx→0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.
问题:⑴割线的斜率与切线PT的斜率有什么关系?
⑵切线PT的斜率为多少?
容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即
说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在处的导数.
(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
(二)导数的几何意义:
函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,
即
说明:求曲线在某点处的切线方程的基本步骤:
①求出P点的坐标;
②求出函数在点处的变化率 ,得到曲线在点的切线的斜率;
③利用点斜式求切线方程.
(二)导函数:
由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,
即:
注:在不致发生混淆时,导函数也简称导数.
(三)函数在点处的导数、导函数、导数 之间的区别与联系。
(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
(2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数
(3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。
三.典例分析
例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
(2)求函数y=3x2在点处的导数.
解:(1),
所以,所求切线的斜率为2,因此,所求的切线方程为即
(2)因为
所以,所求切线的斜率为6,因此,所求的切线方程为即
(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数.
解:
例2.(课本例2)如图3.1-3,它表示跳水运动中
高度随时间变化的函数
,根据图像,请描述、比较曲线在、、附近的变化情况.
解:我们用曲线在、、处的切线,刻画曲线在上述三个时刻附近的变化情况.
(1) 当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.
(2) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
(3) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.
例3.(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.
作处的切线,并在切线上去两点,如,,则它的斜率为:
所以
下表给出了药物浓度瞬时变化率的估计值:
0.2 0.4 0.6 0.8
药物浓度瞬时变化率 0.4 0 -0.7 -1.4
四.课堂练习
1.求曲线y=f(x)=x3在点处的切线;
2.求曲线在点处的切线.
五.回顾总结
1.曲线的切线及切线的斜率;
2.导数的几何意义
六.布置作业
§1.2.1几个常用函数的导数
教学目标:
1、知识目标:使学生应用由定义求导数的三个步骤推导四种常见函数、、、的
导数公式; 掌握并能运用这四个公式正确求函数的导数.
2、过程与方法目标:启发学生思考如何确定物体在某一点A处的瞬时速度. 给出分析方法
3、情感、态度与价值目标:培养学生用严谨的数学思维解决问题的能力, 培养学生从定义的角度思考问题
的好习惯,能初步意识到导数是研究函数,解决实际问题的有力工具, 并在实践中学会善于归纳总结.
教学重点:四种常见函数、、、的导数公式及应用
教学难点: 四种常见函数、、、的导数公式
教学过程:
一.创设情景
我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数,如何求它的导数呢?
由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.
二.新课讲授
1.函数的导数
函数 导数
根据导数定义,因为
所以
表示函数图像(图3.2-1)上每一点处的切线的斜率都为0.若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
2.函数的导数
函数 导数
因为
所以
表示函数图像(图3.2-2)上每一点处的切线的斜率都为1.若表示路程关于时间的函数,则可以解释为某物体做瞬时速度为1的匀速运动.
3.函数的导数
函数 导数
因为
所以
表示函数图像(图3.2-3)上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当时,随着的增加,函数减少得越来越慢;当时,随着的增加,函数增加得越来越快.若表示路程关于时间的函数,则可以解释为某物体做变速运动,它在时刻的瞬时速度为.
4.函数的导数
函数 导数
因为
所以
5.函数的导数
因为
函数 导数
所以
(2)推广:若,则
三.课堂练习
1.课本P13探究1
2.课本P13探究2
四.回顾总结
函数 导数
五.布置作业
§1.2.2基本初等函数的导数公式及导数的运算法则
教学目标:
1.知识与技能:熟练掌握基本初等函数的导数公式; 掌握导数的四则运算法则;能利用给出的基本初等函
数的导数公式和导数的四则运算法则求简单函数的导数.
2.过程与方法:通过动手计算培养学生观察、分析、比较和归纳能力;通过问题的探究体会逼近、类比、以已
知探求未知、从特殊到一般的数学思想方法
3.情感、态度与价值目标:让学生能够应用不断积累的知识,解决复杂问题, 逐步培养起他们学习的信心和
乐趣, 激励他们不断学习探索.
教学重点:基本初等函数的导数公式、导数的四则运算法则
教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用
教学过程:
一.创设情景
五种常见函数、、、、的导数公式及应用
函数 导数
二.新课讲授
(一)基本初等函数的导数公式表
函数 导数
(二)导数的运算法则
导数运算法则
1.2.3.
(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)
三.典例分析
例1.假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
解:根据基本初等函数导数公式表,有
所以(元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)
(2);
(3);
(4);
(5).
(6);
(7)
解:(1),
。
(2)
(3)
(4),
。
(5)
(6)
,
。
(7)
。
【点评】
① 求导数是在定义域内实行的.
② 求较复杂的函数积、商的导数,必须细心、耐心.
例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为
求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)
解:净化费用的瞬时变化率就是净化费用函数的导数.
(1) 因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨.
(2) 因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨.
函数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.
四.课堂练习
1.课本P92练习
2.已知曲线C:y =3 x 4-2 x3-9 x2+4,求曲线C上横坐标为1的点的切线方程;
(y =-12 x +8)
五.回顾总结
(1)基本初等函数的导数公式表
(2)导数的运算法则
6.布置作业
§1.2.2复合函数的求导法则
教学目标:
1.知识与技能:理解并掌握复合函数的求导法则.
2.过程与方法:综合应用知识的能力.
3.情感、态度与价值目标: 让学生能够应用不断积累的知识,解决复杂问题, 逐步培养起他们学习的信心和
乐趣, 激励他们不断学习探索.
教学重点:复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.
教学难点:正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.
教学过程:
一.创设情景
(一)基本初等函数的导数公式表
函数 导数
(二)导数的运算法则
导数运算法则
1.2.3.
(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)
二.新课讲授
复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数,记作。
复合函数的导数 复合函数的导数和函数和的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.
若,则
三.典例分析
例1(课本例4)求下列函数的导数:
(1);(2);
(3)(其中均为常数).
解:(1)函数可以看作函数和的复合函数。根据复合函数求导法则有
=。
(2)函数可以看作函数和的复合函数。根据复合函数求导法则有
=。
(3)函数可以看作函数和的复合函数。根据复合函数求导法则有
=。
例2求的导数.
解:
【点评】
求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果.
例3求的导数.
解:
,
【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.
例4求y =sin4x +cos 4x的导数.
【解法一】y =sin 4x +cos 4x=(sin2x +cos2x)2-2sin2cos2x=1-sin22 x
=1-(1-cos 4 x)=+cos 4 x.y′=-sin 4 x.
【解法二】y′=(sin 4 x)′+(cos 4 x)′=4 sin 3 x(sin x)′+4 cos 3x (cos x)′
=4 sin 3 x cos x +4 cos 3 x (-sin x)=4 sin x cos x (sin 2 x -cos 2 x)
=-2 sin 2 x cos 2 x=-sin 4 x
【点评】
解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.
例5曲线y =x(x +1)(2-x)有两条平行于直线y =x的切线,求此二切线之间的距离.
【解】y =-x 3 +x 2 +2 x y′=-3 x 2+2 x +2
令y′=1即3 x2-2 x -1=0,解得 x =-或x =1.
于是切点为P(1,2),Q(-,-),
过点P的切线方程为,y -2=x -1即 x -y +1=0.
显然两切线间的距离等于点Q 到此切线的距离,故所求距离为
=.
四.课堂练习
1.求下列函数的导数 (1) y =sinx3+sin33x;(2);(3)
2.求的导数
五.回顾总结
六.布置作业
§1.3.1函数的单调性与导数
教学目标:
1'.知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区
间,对多项式函数一般不超过三次;
2.过程与方法:培养学生观察、实验、探究、验证与交流等数学活动能力
3.情感、态度与价值:通过实例与讨论,必须让学生认同:函数的单调性与函数的导数之间的关系;必须让学
生认同与体会:一般情况下,在判断函数的单调性时“导数”比“定义”更简便.
教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1) 运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
(2) 从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数表示函数在点处的切线的斜率.
在处,,切线是“左下右上”式的,这时,函数在附近单调递增;
在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1); (2)
(3); (4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.
(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
(3)因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
(4)因为,所以 .
当,即 时,函数 ;
当,即 时,函数 ;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练
例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数在或内的图像“陡峭”,
在或内的图像“平缓”.
例4.求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
例5.已知函数 在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
例6.已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′
=1-1·x-2=
令>0.
解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
四.课堂练习
1.求下列函数的单调区间
1.f(x)=2x3-6x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx
2.课本 练习
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数单调区间
(3)证明可导函数在内的单调性
六.布置作业
§1.3.2函数的极值与导数
教学目标:
1'.知识与技能理解极大值、极小值的概念;能够运用判别极大值、极小值的方法来求函数的极值;掌握求
可导函数的极值的步骤;
2.过程与方法:培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.
3.情感、态度与价值目标 :通过讲解,必须让学生体会:极值是一个局部要领是函数仅仅对某一点x0的
近旁这样一个小范围内的最大值或最小值必须让学生理解:可导函数在其定义域上的单调性
与函数极值的相互关系.
教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.
教学过程:
一.创设情景
观察图3.3-8,我们发现,时,高台跳水运动员距水面高度最大.那么,函数在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?
放大附近函数的图像,如图3.3-9.可以看出;在,当时,函数单调递增,;当时,函数单调递减,;这就说明,在附近,函数值先增(,)后减(,).这样,当在的附近从小到大经过时,先正后负,且连续变化,于是有.
对于一般的函数,是否也有这样的性质呢?
附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1) 运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
(2) 从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数表示函数在点处的切线的斜率.在处,,切线是“左下右上”式的,这时,函数在附近单调递增;在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.(课本例4)求的极值
解: 因为,所以
。
下面分两种情况讨论:
(1)当>0,即,或时;
(2)当<0,即时.
当x变化时, ,的变化情况如下表:
-2 (-2,2) 2
+ 0 - 0 +
↗ 极大值 ↘ 极小值 ↗
因此,当时,有极大值,并且极大值为;
当时,有极小值,并且极小值为。
函数的图像如图所示。
例2求y=(x2-1)3+1的极值
解:y′=6x(x2-1)2=6x(x+1)2(x-1)2
令y′=0解得x1=-1,x2=0,x3=1
当x变化时,y′,y的变化情况如下表
-1 (-1,0) 0 (0,1) 1
- 0 - 0 + 0 +
↘ 无极值 ↘ 极小值0 ↗ 无极值 ↗
∴当x=0时,y有极小值且y极小值=0
1.极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点
2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点
3.极大值与极小值统称为极值 注意以下几点:
(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>
(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点
而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
4. 判别f(x0)是极大、极小值的方法:
若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值
5. 求可导函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0的根
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值
如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点
四、巩固练习:
1.求下列函数的极值.
(1)y=x2-7x+6 (2)y=x3-27x
(1)解:y′=(x2-7x+6)′=2x-7 令y′=0,解得x=. 当x变化时,y′,y的变化情况如下表.
- 0 +
↘ 极小值 ↗
∴当x=时,y有极小值,且y极小值=-.
(2)解:y′=(x3-27x)′=3x2-27=3(x+3)(x-3)
令y′=0,解得x1=-3,x2=3.
当x变化时,y′,y的变化情况如下表.
-3 (-3,3) 3
+ 0 - 0 +
↗ 极大值54 ↘ 极小值-54 ↗
∴当x=-3时,y有极大值,且y极大值=54.
当x=3时,y有极小值,且y极小值=-54
五、回顾总结:函数的极大、极小值的定义以及判别方法.求可导函数f(x)的极值的三个步骤.还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续.可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号.函数的不可导点可能是极值点
六、课后作业:
§1.3.3函数的最大(小)值与导数
教学目标:
1'.知识与技能使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点
(包括端点)处的函数中的最大(或最小)值必有的充分条件;使学生掌握用导数
求函数的极值及最值的方法和步骤
2.过程与方法:培养学生的会从特殊性问题引申到一般性来研究,培养学生的思维力.
3.情感、态度与价值目标:通过实例与讨论,必须让学生体会与认同:用函数的导数求解函数最大值与最小值
的方法:必须让学生体会与理解:用函数的导数求解函数最大值与最小值的必满足的充分条件.
教学重点:利用导数求函数的最大值和最小值的方法.
教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.
教学过程:
一.创设情景
我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果是函数的极大(小)值点,那么在点附近找不到比更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果是函数的最大(小)值,那么不小(大)于函数在相应区间上的所有函数值.
二.新课讲授
观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.
1.结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值.
说明:⑴如果在某一区间上函数的图像是一条连续不断的曲线,则称函数在这个区间上连续.(可以不给学生讲)
⑵给定函数的区间必须是闭区间,在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;
⑶在闭区间上的每一点必须连续,即函数图像没有间断,
⑷函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)
2.“最值”与“极值”的区别和联系
⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.
⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;
⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个
⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.
3.利用导数求函数的最值步骤:
由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
一般地,求函数在上的最大值与最小值的步骤如下:
⑴求在内的极值;
⑵将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值
三.典例分析
例1.(课本例5)求在的最大值与最小值
解: 由例4可知,在上,当时,有极小值,并且极小值为,又由于,
因此,函数在的最大值是4,最小值是.
上述结论可以从函数在上的图象得到直观验证.
例2.求函数在区间上的最大值与最小值
解:先求导数,得
令=0即解得
导数的正负以及,如下表
X -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2
y/ - 0 + 0 - 0 +
y 13 ↘ 4 ↗ 5 ↘ 4 ↗ 13
从上表知,当时,函数有最大值13,当时,函数有最小值4
例3.已知,∈(0,+∞).是否存在实数,使同时满足下列两个条件:(1))在(0,1)上是减函数,在[1,+∞)上是增函数;(2)的最小值是1,若存在,求出,若不存在,说明理由.
解:设g(x)=
∵f(x)在(0,1)上是减函数,在[1,+∞)上是增函数
∴g(x)在(0,1)上是减函数,在[1,+∞)上是增函数.
∴ ∴ 解得
经检验,a=1,b=1时,f(x)满足题设的两个条件.
四.课堂练习
1.下列说法正确的是( )
A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值
C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x) ( )
A.等于0 B.大于0 C.小于0 D.以上都有可能
3.函数y=,在[-1,1]上的最小值为( )
A.0 B.-2 C.-1 D.
4.求函数在区间上的最大值与最小值.
5.课本 练习
五.回顾总结
1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;
2.函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;
3.闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值
4.利用导数求函数的最值方法.
六.布置作业
§1.4生活中的优化问题举例
教学目标:
1.知识与技能:使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用提高将
实际问题转化为数学问题的能力
2.过程与方法: 解决两个实际问题, 突出应用引入新课
3.情感、态度与价值观:让学生明白导数非常明显的特征就是和实际问题联系的紧密性和它的应用性,通
过解决大量的实际问题培养学生的应用意识, 使学生明白数学源于生活实际, 有应用实 际, 同时培养学生探索和创新精神.
教学重点:利用导数解决生活中的一些优化问题.
教学难点:利用导数解决生活中的一些优化问题.
教学过程:
一.创设情景
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.
二.新课讲授
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1、与几何有关的最值问题;
2、与物理学有关的最值问题;
3、与利润及其成本有关的最值问题;
4、效率最值问题。
解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.
利用导数解决优化问题的基本思路:
三.典例分析
例1.海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?
解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为
。
求导数,得
。
令,解得舍去)。
于是宽为。
当时,<0;当时,>0.
因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。
答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。
例2.饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?
【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
解:由于瓶子的半径为,所以每瓶饮料的利润是
令 解得 (舍去)
当时,;当时,.
当半径时,它表示单调递增,即半径越大,利润越高;
当半径时, 它表示单调递减,即半径越大,利润越低.
(1)半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
(2)半径为cm时,利润最大.
换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?
有图像知:当时,,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值.
当时,,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm 时,利润最小.
例3.磁盘的最大存储量问题
计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.
(1) 是不是越小,磁盘的存储量越大?
(2) 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量
×
(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.
(2)为求的最大值,计算.
令,解得
当时,;当时,.
因此时,磁盘具有最大存储量。此时最大存储量为
例4.汽油的使用效率何时最高
我们知道,汽油的消耗量(单位:L)与汽车的速度(单位:km/h)之间有一定的关系,汽油的消耗量是汽车速度的函数.根据你的生活经验,思考下面两个问题:
(1)是不是汽车的速度越快,汽车的消耗量越大?
(2)“汽油的使用率最高”的含义是什么?
分析:研究汽油的使用效率(单位:L/m)就是研究秋游消耗量与汽车行驶路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(单位:L),表示汽油行驶的路程(单位:km).这样,求“每千米路程的汽油消耗量最少”,就是求的最小值的问题.
通过大量的统计数据,并对数据进行分析、研究,人们发现,汽车在行驶过程中,汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间有如图所示的函数关系.
从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题.
解:因为
这样,问题就转化为求的最小值.从图象上看,表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90.
因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90.从数值上看,每千米的耗油量就是图中切线的斜率,即,约为 L.
例5.在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
解法一:设箱底边长为xcm,则箱高cm,得箱子容积
.
令 =0,解得 x=0(舍去),x=40,
并求得V(40)=16 000
由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值
答:当x=40cm时,箱子容积最大,最大容积是16 000cm3
解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积
.(后面同解法一,略)
由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处.
事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值
例6.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?
解:设圆柱的高为h,底半径为R,则表面积
S=2πRh+2πR2
由V=πR2h,得,则
S(R)= 2πR+ 2πR2=+2πR2
令 +4πR=0
解得,R=,从而h====2
即h=2R
因为S(R)只有一个极值,所以它是最小值
答:当罐的高与底直径相等时,所用材料最省
变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
提示:S=2+h=
V(R)=R=
)=0 .
例6.在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。
(1)、如果C(x)=,那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量)
(2)、如果C(x)=50x+10000,产品的单价P=100-0.01x,那么怎样定价,可使利润最大?
变式:已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?
分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.
解:收入,
利润
令,即,求得唯一的极值点
答:产量为84时,利润L最大
例7.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b.
解:由梯形面积公式,得S= (AD+BC)h,其中AD=2DE+BC,DE=h,BC=b
∴AD=h+b, ∴S= ①
∵CD=,AB=CD.∴l=×2+b ②
由①得b=h,代入②,∴l=
l′==0,∴h=, 当h<时,l′<0,h>时,l′>0.
∴h=时,l取最小值,此时b=
例8.已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y =4-x2在x轴上方的曲线上,求这种矩形中面积最大者的边长.
【解】设位于抛物线上的矩形的一个顶点为(x,y),且x >0,y >0,
则另一个在抛物线上的顶点为(-x,y),
在x轴上的两个顶点为(-x,0)、(x,0),其中0< x <2.
设矩形的面积为S,则S =2 x(4-x2),0< x <2.
由S′(x)=8-6 x2=0,得x =,易知
x =是S在(0,2)上的极值点,
即是最大值点,
所以这种矩形中面积最大者的边长为和.
【点评】
应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值.
练习:1:一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?
【解】假设每次进书x千册,手续费与库存费之和为y元,
由于该书均匀投放市场,则平均库存量为批量之半,即,故有
y =×30+×40,y′=-+20,
令y′=0,得x =15,且y″=,f″(15)>0,
所以当x =15时,y取得极小值,且极小值唯一,
故 当x =15时,y取得最小值,此时进货次数为=10(次).
即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.
2:有甲、乙两城,甲城位于一直线形河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省?
【解】设水厂D点与乙城到岸的垂足B点之间的距离为x千米,总费用为y元,
则CD =.
y =500(50-x)+700
=25000-500 x +700,
y′=-500+700 · (x 2+1600)· 2 x=-500+,
令y′=0,解得x =.
答:水厂距甲距离为50-千米时,总费用最省.
【点评】
当要求的最大(小)值的变量y与几个变量相关时,我们总是先设几个变量中的一个为x,然后再根据条件x来表示其他变量,并写出y的函数表达式f(x).
四.课堂练习
1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.(高为1.2 m,最大容积)
5.课本 练习
五.回顾总结
1.利用导数解决优化问题的基本思路:
2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。
六.布置作业
h
t
o
f(x2)
y=f(x)
y
△y =f(x2)-f(x1)
f(x1)
△x= x2-x1
x2
x1
x
O
h
t
o
图3.1-2
建立数学模型
解决数学模型
作答
用函数表示的数学问题
优化问题
用导数解决数学问题
优化问题的答案
_
x
_
x
_
60
_
60
x
x
建立数学模型
解决数学模型
作答
用函数表示的数学问题
优化问题
用导数解决数学问题
优化问题的答案
30