首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
湘教版(2024)
八年级上册
第4章 一元一次不等式(组)
4.3 一元一次不等式的解法
2014-2015学年湘教版八年级上册数学同步资料包:《4.3一元一次不等式的解法》(课件+教案,2份)
文档属性
名称
2014-2015学年湘教版八年级上册数学同步资料包:《4.3一元一次不等式的解法》(课件+教案,2份)
格式
zip
文件大小
1.6MB
资源类型
教案
版本资源
湘教版
科目
数学
更新时间
2015-06-18 08:20:22
点击下载
文档简介
课件33张PPT。一元一次不等式的解法4.3 已知一台升降机的最大载重量是1200kg,在
一名重75kg的工人乘坐的情况下,它最多能装载
多少件25kg重的货物?本问题中涉及的数量关系是: 设能载x件25kg重的货物,因为升降机最大载重量是1200kg,所以有
75+25x≤1200. ①工人重 + 货物重 ≤ 最大载重量. 含有一个未知数,且含未知数的项的次数是1的不等式,称为一元一次不等式.像75 + 25x ≤1200 这样, 为了求出升降机能装载货物的件数,需要求出满足不等式75+25x≤1 200的x的值.如何求呢? 与解一元一次方程类似,我们将根据不等式的基本性质,进行如下步骤:将①式移项,得25x ≤ 1200-75,将②式两边都除以25(即将x的系数化为1),75+25x≤1200. ①即 25x ≤ 1125. ②得 x≤45.因此,升降机最多装载45件25kg重的货物. 我们把满足一个不等式的未知数的每一个值,称为这个不等式的一个解.例如,5.4,6, 都是3x>15的解.这样的解有无数个. 我们把一个不等式的解的全体称为这个不等式的解集.例如 我们用x>5表示3x>15的解集. 求一个不等式的解集的过程称为解不等式. 今后我们在解一元一次不等式时,将利用前面讲述的不等式的基本性质,将原不等式化成形如x ≤a(或x
a,x≥a)的不等式,就可得到原不等式的解集.例1 解下列一元一次不等式 :举
例(1) 2-5x < 8-6x ;(2) .解(1) 原不等式为2-5x < 8-6x 将同类项放在一起即,得 x < 6 移项,得 -5x+6x < 8-2计算结果解首先将分母去掉去括号,得 2x -10 + 6 ≤ 9x 去分母,得 2(x -5)+1×6 ≤ 9x移项,得 2x - 9x ≤ 10 - 6去括号将同类项放在一起(2) 原不等式为合并同类项,得: -7x ≤ 4 两边都除以-7,得 x ≥ 计算结果根据不等式性质3 解一元一次不等式与解一元一次方程的依据和步骤有什么异同点? 它们的依据不相同.解一元一次方程的依据是等式的性质,解一元一次不等式的依据是不等式的性质. 它们的步骤基本相同,都是去分母、去括号、移项、合并同类项、两边都除以未知数的系数. 这些步骤中,要特别注意的是:不等式两边都乘(或除以)同一个负数,必须改变不等号的方向.这是与解一元一次方程不同的地方. 1. 解下列不等式: (1) -5x ≤ 10 ; (2)4x -3 < 10x + 7 .(2) 原不等式为 4x -3 < 10x + 7
移项,得 4x -10x < 3+7
化简,得 -6x < 10
方程两边同除以 -6, x > 2. 解下列不等式:(1) 3x -1 > 2(2-5x) ;(2) .(2) 原不等式为
去分母,得 2(x+2)≥ 3(2x-3)
去括号,得 2x+4 ≥ 6x-9
移项,得 2x -6x ≥ -4-9
化简,得 -4x ≥ -13
两边同除以 -4, x ≤ 一个不等式的解集常常可以借助数轴直观地表示出来.先在数轴上标出表示2的点A则点A右边所有的点表示的数都大于2,而点A左边所有的点表示的数都小于2因此可以像图那样表示3x>6的解集x>2.如何在数轴上表示出不等式3x>6的解集呢?容易解得不等式3x>6的解集是x>2. 把表示2 的点A 画成空心圆圈,表示解集不包括2.例2 解不等式12-6x≥2(1-2x),并把它的解集在
数轴上表示出来 :举
例解首先将括号去掉去括号,得 12 -6x ≥ 2-4x移项,得 -6x+4x ≥ 2-12将同类项放在一起合并同类项,得: -2x ≥ -10两边都除以-2,得 x ≤ 5根据不等式基本性质2原不等式的解集在数轴上表示如图所示.解集x≤5中包含5,所以在数轴上将表示5的点画成实心圆点.举
例解解这个不等式,得 x ≤ 6x≤6在数轴上表示如图所示:根据题意,得 x +2≥ 0所以,当x≤6时,代数式 x+2的值大于或等于0.由图可知,满足条件的正整数有 1,2,3,4,5,6.例3 当x取什么值时,代数式 x+2的值大于或等于0?并求出所有满足条件的正整数.1. 解下列不等式,并把它们的解集在数轴上表示出来: (1) 4x -3 < 2x+7 ; (2) .解(1) 原不等式为 4x -3 < 2x+7
移项,得 4x-2x < 3+7
化简,得 2x < 10
两边同除以2, x < 5
原不等式的解集在数轴上表示为:(2) 原不等式为
去分母,得 2(x-3)≥ (3x+5)
去括号,得 2x-6 ≥ 3x+5
移项,得 2x -3x ≥ 6+5
化简,得 -x ≥ 11
两边同除以 -1, x ≤-11
原不等式的解集在数轴上表示为:0-112. 先用不等式表示下列数量关系,然后求出它们的解集,并在数轴上表示出来: (1) x的 大于或等于2; (2) x与2的和不小于1; (3) y与1的差不大于0; (4) y与5的差大于-2;例1 求不等式 的正整数解.例2 已知 且x>y,则k的取值范围是 .k<-1例3 解不等式 ,并把解集在数轴上表示出来.结 束4.3 一元一次不等式的解法
4.3.1一元一次不等式的解法
(第4课时)
教学目标
1 知道一元一次不等式的标准形式,理解不等式的解与解集的概念,了解什么是一元一次不等式。
2 理解用不等式的性质解一元一次不等式的基本方法,会熟练的解一元一次不等式。
教学重点、难点
重点:一元一次不等式的解法;难点:不等式的两边同乘以(或除以)一个负数
教学过程
一 创设情境,导入新课
动脑筋:
水果批发市场的梨每千克3元,苹果每千克4元,小王购进50千克梨后还想购进些苹果,但他只有350元,他最多能买多少千克苹果?
思考:1 买梨子用去的钱和买苹果用去的钱以及身上有的350元钱有什么关系?
买梨子用去的钱_____买苹果用去的钱_____身上有的350元钱
2若设他买了x千克苹果可以列出关系式:_____________________
3 这个关系式有什么特点呢?(含有___个未知数,且未知数的次数为____)这样的不等式叫什么不等式?你认为呢?
含有___个未知数,且未知数的次数为____的不等式叫_______不等式。
4 请你把一元一次不等式的概念与一元一次方程的概念对比,看看它们有什么异同?
5 什么叫一元一次方程的标准形式?_________,__________,由此请你猜想什么是一元一次不等式的标准形式?______________,______________,_________________,______________
( )叫一元一次不等式的标准形式。
怎样求出小王最多能买多少千克苹果呢?只需要解上面的一元一次不等式,这节课我们来研究一元一次不等式的解法。
二 合作交流,探究新知
1 不等式的解和解集的概念
为了求出小王最多能买多少千克苹果,需要求出x的范围,你会求吗?
为了对比不等式与方程,请你解方程:3×50+4x=350.
(1)什么是方程的解,一般的一元一次方程有几个解?(2)猜想什么叫不等式的解?
满足一个不等式的________的值,叫不等式的解。
(2)不等式3×50+4x≤350.的解有多少个?不等式3×50+4x≤350.的解有什么特点?怎样表示3×50+4x≤350.的解?一个不等式的所有解称为不等式的______.
(2)什么叫解方程?你能仿照解方程的概念说说什么叫解不等式吗?
求不等式的解的_____叫解不等式
(3)解方程的最终目的是把方程变形为:x=a的形式,解不等式的最终目的是什么呢?
把不等式变形为___________________________________________形式。
(4)解方程的依据是等式的性质,解不等式的依据是什么呢?是_____________________
2 不等式的解法
例1 解下列不等式和方程
(1)2-5x=8-6x, 2-5x<8-6x,
(2)
说一说:1解一元一次不等式与解一元一次方程有什么相同之处和不同之处?
2 1解一元一次不等式有哪些步骤?
先去_____,后去______,再______,化简为______形式,两边同除以______________(注意:两边同除以一个负数,不等号的方向要________)
考考你:
1 解下列不等式:
(1)-5x≤10, (2) 4x-3<10x
(3) 3x-1>2 (2-5x) (4) ≥
一元一次不等式的解法.
仿照一元一次方程的解法,一元一次不等式也按照去分母、去括号、移项、化简、系数化为1的步骤求解,但要注意在去分母、系数化为1时,不等式两边乘以(或除以)一个负数,不等号的方向要改变。
2下列解不等式开始出现错误的是( )
2(3x+6)> 5 (6x+4)
解:(A) 6x+12>30x+20 (B) 6x-30x>20- 12 (C) -24x>8 ( D) x>-
三 应用迁移,巩固提高
1 求不等式的整数解
例1 求不等式2(x-)+的正整数解。
2 方程与不等式的综合
例2 已知方程(m+2)x=4的解为x=2,请求出不等式(m-2)x>3的解集
四 冲刺奥赛,培养智力
例3 (第12届“希望杯”试题)已知关于x的不等式的解是,那么m的值是__________
五 反思小结,拓展提高 这节课你学到什么?
作业:p 143 A组1、2
4.3.2 用数轴表示一元一次不等式的解集
(第5课时)
教学目标
1 进一步熟练掌握一元一次不等式的解法; 2 掌握不等式解集在数轴上的表示方法,能正确的表示出解集。
教学重点、难点
重点:熟练的解一元一次不等式,并把解集表示在数轴上。
难点:在数轴上正确的表示不等式的解集。
教学过程
一 创设情境,导入新课
1 解下列不等式
1(1)7(4-x)-2(4-3x)<4x (2)x-
2 解一元一次不等式的依据是什么?有哪些步骤?与解一元一次方程有哪些相同之处和不同之处?
3在数轴上表示:(1) -3
(2)大于3的数
(3) 不大于3的数,
(4)小于5的数
(5)大于-2而不大于4的数
数可以用数轴上的点来表示,数轴上的点可以表示数,这样数和形就紧密的结合起来了,,一元一次不等式的解集能否用数轴上的点来表示呢?下面我们来研究这个问题。
二 合作交流,探究新知。
1 用数轴上的点来表示不等式的解集
动脑筋:(1)不等式3x>6的解集是什么?
解:两边同除以_____,得:x________
(2)不等式3x>6的解集有多少个?包括3吗?
(3)分布在数轴上的什么位置?
(4)怎样在数轴上表示3x>6的解呢?
(5)把3x>6改为3x≥6,怎样在数轴上表示其解集呢?
(6)把3x>6改为3x<6在数轴又怎样表示其解集呢?
(7)有上可知,在数轴上表示不等式的解集时是怎样区别“>”与“≥”?怎样区别“>”与“<”的呢?
2考考你:
把下列不等式的解集在数轴上表示出来:
①x>-1; ② x≥ -1 ;③ x<4; ④ x≤4 , ⑤ -2<x≤4, ⑥ 0≤x<3
根据图示写出不等式的解集
一元一次不等式的解集存在以下四种情况:
要注意“>”、“<”在数轴上用空心圆圈表示,“≥”、“≤”在数轴上用实心点表示。
三 应用迁移,巩固提高
1 解不等式
例1 解下列不等式12-6x≥2(1-2x),并把解集在数轴上表示出来
2 实践应用
例2 当x取什么值时,代数式的值小于或等于0?并把解集在数轴上表示出来。
3方程与不等式的综合问题
例3 当m取何值时,关于x的方程是:(1)正数,(2)负数,(3)大于1.
四 冲刺奥赛,培养智力
例5 已知不等式3x-a≤0的正整数解恰好是1,2,3,那么a的取值范围是________(“希望杯”第3届初一第2试)
五 反思小结,拓展提高 用数轴表示不等式的解有几步?方向怎么确定?界点在什么情况下用实心点,什么情况下用空心点?
六作业:P143 习题A组2,3,4
教学后记:
点击下载
同课章节目录
第1章 分式
1.1 分式
1.2 分式的乘法与除法
1.3 整数指数幂
1.4 分式的加法和减法
1.5 可化为一元一次方程的分式方程
第2章 三角形
2.1 三角形
2.2 命题与证明
2.3 等腰三角形
2.4 线段的垂直平分线
2.5 全等三角形
2.6 用尺规作三角形
第3章 实数
3.1 平方根
3.2 立方根
3.3 实数
第4章 一元一次不等式(组)
4.1 不等式
4.2 不等式的基本性质
4.3 一元一次不等式的解法
4.4 一元一次不等式的应用
4.5 一元一次不等式组
第5章 二次根式
5.1 二次根式
5.2 二次根式的乘法和除法
5.3 二次根式的加法和减法
点击下载
VIP下载