16.2二次根式乘法
一、学习目标
理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简
二、学习重点、难点
重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、学习过程
(一)自学导航(课前预习)
1.填空:(1)×=____,=____; ×__
(2)×=____,=___; ×__
(3)×=___,=___. ×__
(二)合作交流(小组互助)
1、 学生交流活动总结规律.
2、一般地,对二次根式的乘法规定为
·=.(a≥0,b≥0 反过来: =·(a≥0,b≥0)
例1、计算
(1)× (2)× (3)3×2 (4)·
例2、化简
(1) (2) (3) (4) (5)
巩固练习
(1)计算: ① × ②5×2 ③·
(2)化简: ; ; ; ;
(三)展示提升(质疑点拨)
判断下列各式是否正确,不正确的请予以改正:
(1)
(2)×=4××=4×=4=8
展示学习成果后,请大家讨论:对于×的运算中不必把它变成 后再进行计算,你有什么好办法?
注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
2、化简二次根式达到的要求:
(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
(四)达标检测 A组
1、选择题
(1)等式成立的条件是( )
A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1
下列各等式成立的是( ).A.4×2=8 B.5×4=20
C.4×3=7 D.5×4=20
(3)二次根式的计算结果是( )A.2 B.-2 C.6 D.12
2、化简与计算:
(1); (2); (3); (4)
B组
1、选择题
(1)若,则=( )
A.4 B.2 C.-2 D.1
(2)下列各式的计算中,不正确的是( )
A.=(-2)×(-4)=8
B.
C.
D.
2、计算:(1)6×(-2); (2);
3、不改变式子的值,把根号外的非负因式适当变形后移入根号内。
(1) -3 (2)
16.2二次根式除法
一、学习目标
1、掌握二次根式的除法法则和商的算术平方根的性质。
2、能熟练进行二次根式的除法运算及化简。
二、学习重点、难点
重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质。
难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。
三、学习过程
(一)自学导航(课前预习)
1、计算: (1)3×(-4) (2)
2、填空: (1)=____,=____; 规律: ______;
(2)=____,=____; ______;
(3)=____,=____; _______;
(4)=____,=___. _______.
一般地,对二次根式的除法规定:
=(a≥0,b>0)反过来,=(a≥0,b>0)
(二)合作交流(小组互助)
1、例4计算:(1) (2) (3) (4)
2、例5化简:
(1) (2)
注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。
2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。
(三)展示提升(质疑点拨)
阅读下列运算过程:
,
数学上将这种把分母的根号去掉的过程称作“分母有理化”。
例6计算:
(1) (2) (3) (4)
(四)达标检测 A组
1、选择题
(1)计算的结果是( ). A. B. C. D.
(2)化简的结果是( ) A.- B.- C.- D.-
2、计算:
(1) (2) (3) (4)
B组
用两种方法计算:
(1) (2)
16.2最简二次根式
一、学习目标
1、理解最简二次根式的概念。2、把二次根式化成最简二次根式.
3、熟练进行二次根式的乘除混合运算。
二、学习重点、难点
重点:最简二次根式的运用。
难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。
三、学习过程
(一)自学导航(课前预习)
1、化简(1)= (2)=
(3) = (4)=
(二)合作交流(小组互助)
观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:
1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式.
我们把满足上述两个条件的二次根式,叫做最简二次根式.
2、化简:
(1) (2) (3)
3、计算:
注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化。
2、判断是否为最简二次根式的两条标准:
(1)被开方数不含分母;
(2)被开方数中所有因数或因式的幂的指数都小于2.
例7设长方形的面积为S,相邻两边长分别为a,b,已知S=,b=,求a.
(四)达标检测
1. 下列各式不是最简二次根式的是( )
A. B. C. D.
2、化简=_________.(x≥0)
3、计算:(1) (2)
4.、若x、y为实数,且y=,求的值。
5观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:
,
,
同理可得: =,……
从计算结果中找出规律,并利用这一规律计算
(……+)()的值