6.3 课时1 种群基因组成的变化与物种的形成 课件 (共27张PPT)2023-2024学年高一生物人教版(2019)必修2

文档属性

名称 6.3 课时1 种群基因组成的变化与物种的形成 课件 (共27张PPT)2023-2024学年高一生物人教版(2019)必修2
格式 pptx
文件大小 9.8MB
资源类型 教案
版本资源 人教版(2019)
科目 生物学
更新时间 2024-01-13 22:31:28

图片预览

文档简介

(共27张PPT)
种群基因组成的变化与物种的形成
第一课时
第3节
人教版 必修2
1. 能够阐述种群、种群基因库、基因频率等概念,说明种群是生物繁殖和进化的基本单位。
2. 能计算种群的基因频率和基因型频率,得出遗传平衡定律的数学模型。
3. 能阐明自然选择对种群基因频率变化的影响。
甲同学说:当然是先有鸡蛋了,因为只有生殖细胞产生的基因突变才能遗传给后代,体细胞即使发生了基因突变,也不能影响后代的性状。
乙同学说:不对,人们在养鸡过程中,是根据鸡的性状来选择的,只让符合人类需求的鸡繁殖后代,因此是先有鸡后有蛋。
你同意哪位同学的观点?你的答案和理由是什么?
这两种观点都有一定的道理,但都不全面。因为它们忽视了鸡和蛋在基因组成上的一致性,也忽视了生物的进化是以种群为单位而不是以个体为单位这一重要观点。生物进化的过程是种群基因库在环境的选择作用下定向改变的过程,以新种群与祖先种群形成生殖隔离为标志,并不是在某一时刻突然有一个个体或一个生殖细胞成为一个新物种。
问题探讨
自然选择直接作用的是生物的个体,而且是个体的表型。但是,在自然界,没有哪个个体是长生不死的,个体的表型会随着个体的死亡而消失,决定表型的基因却可以随着生殖而世代延续,并且在群体中扩散。
研究生物的进化,仅研究个体和表型是不够的,还必须研究群体基因组成的变化。
生活在一定区域的同种生物的全部个体的集合叫做种群。
1. 种群
一个非洲象种群(部分个体)
一片树林中的全部猕猴
一片草地上的所有蒲公英
一、种群和种群基因库
同一区域(区域可大可小,大到地球,小的可以是一个池塘)
同一物种的生物
全部个体
种群的三个要素
判断下列是否属于种群:
(1)一个池塘中的全部鱼
(2)一个池塘中的全部鲤鱼
(3)两个池塘内的全部青蛙
(4)一片草地上的全部植物
(5)一片草地上的成年梅花鹿





种群的个体并不是机械地结合在一起。一个种群其实就是一个繁殖的单位,雌雄个体可以通过繁殖将各自的基因遗传给后代。
种群在繁衍过程中,个体有新老交替,基因却代代相传。
思考:同前一年的蝗虫种群相比,新形成的蝗虫种群在基因组成上会有什么变化吗?
2. 种群是生物进化的基本单位
3. 种群基因库
一个种群中全部个体所含有的全部基因叫这个种群的基因库。
4. 基因频率
在基因库中,某基因占控制此性状全部等位基因数的比率叫做基因频率。
5. 基因型频率
在一个种群中,某基因型个体占全部个体的比率。
例:某昆虫种群中,绿色翅的基因为A, 褐色翅的基因位a,调查发现AA、Aa、aa的个体分别占30%、60%、10%、那么A、a的基因频率是多少?
假设该种群数量为100,基因型AA的个体为30,Aa个体为60,aa个体为10,那么控制此性状的等位基因总数200个。
A基因数=2×30﹢60=120个
a基因数=60﹢2×10=80个
A基因的频率=
=
60%
a基因的频率=
=
40%
① 在种群中,一对等位基因的基因频率之和等于1,基因型频率之和也等于1。
② 一个基因的频率=该基因纯合子的基因型频率+1/2杂合子的基因型频率
假设上述昆虫种群数量非常大,所有的雌雄个体间都能自由交配并能产生后代,没有迁入和迁出,不同翅色的个体生存和繁殖的机会是均等的,基因A和a都不产突变,根据孟德尔的分离定律计算。
(1)该种群产生的A配子和a配子的比值各是多少?
(2)子代基因型的频率各是多少?
(3)子代种群的基因频率各是多少?
(4)将计算结果填入下表,想一想,子二代、子三代以及若干代以后,种群的基因频率会 同子一代一样吗?
用数学方法讨论基因频率的变化
亲代基因型比值 AA(30%) Aa(60%) aa(10%)
配子的比值 A( ) A( ) a( ) a( )
子代基因型频率 AA( ) Aa( ) aa( )
子代基因频率 A( ) a( )
思考·讨论
亲代 子一代 子二代 子三代
基因型频率 AA 30%
Aa 60%
aa 10%
基因频率 A 60%
a 40%
36%
48%
16%
60%
40%
36%
16%
48%
60%
60%
40%
40%
36%
48%
16%
6. 遗传平衡定律(哈代-温伯格定律)
各代基因频率相同吗?基因型频率相同吗?这有什么前提条件吗?
各代基因频率相同。基因型频率从子一代开始保持不变。需要满足上述5个前提条件。
6. 遗传平衡定律(哈代-温伯格定律)
当群体满足以下五个条件:
①种群群体数量足够大; ②全部的雌雄个体间都能自由交配并能产生后代; ③没有迁入与迁出; ④自然选择对性状没有作用; ⑤基因A和a都不产生突变
设A的基因频率为p,a的基因频率为q;则有p+q=1,那么
种群的基因频率将不会改变
(p+q)2 = p2 + 2pq + q2 = 1
AA=p2 Aa=2pq aa=q2
2. 上述计算结果是建立在5个假设条件基础上的。5个条件为:①昆虫群体数量足够大; ②全部的雌雄个体间都能自由交配并能产生后代; ③ 没有迁入与迁出; ④ 自然选择对性状没有作用 ⑤ 基因A和a都不产生突变。 对自然界的种群来说,这5个条件都成立吗?
用数学方法讨论基因频率的改变
遗传平衡所指的种群是理想种群,在自然条件下,这样的种群是不存在的。这说明在自然界中,种群的基因频率迟早要发生变化,也就是说种群的进化是必然的。
3. 如果该种群出现新的突变型(基因型为A2a或A2A2),也就是产生新的等位基因A2,种群的基因频率会变化吗?基因A2的频率可能会怎样变化?
突变产生的新基因会使种群的基因频率发生变化。
基因A2的频率是增加还是减少,要看这一突变对生物体是有益还是有害的,这往往取决于生物生存的环境。
基因突变在自然界是普遍存在的。基因突变产生新的等位基因,这就可以使种群的基因频率发生变化。
可遗传的变异
变异
不可遗传的变异
基因突变
染色体变异
基因重组
突变
二、种群基因频率的变化
由于种群是由许多个体组成,每个个体的细胞中都有成千上万个基因,这样,每一代就会产生大量的突变。
思考:生物自发突变的频率很低,而且大多数突变对生物体是有害的,那么,它为何还能够作为生物进化的原材料呢?
【例如】果蝇1组染色体上约有1.3×104个基因,假定每个基因的突变频率都
为10-5,对一个约有108个个体的果蝇种群来说,每一代出现的基因突变数是:
1.3× 104 × 10-5
个体(1.3×10-1)
× 108
种群
=2 .6×107(个)
影响种群基因频率变化的因素
① 突变
影响种群基因频率变化的因素
基因突变产生的等位基因,通过有性生殖过程中的基因重组,可以形成多种多样的基因型,从而使种群中出现多种多样可遗传的变异类型。
猫由于基因重组而产生的毛色变异
② 基因重组
影响种群基因频率变化的因素
突变的有害和有利也不是绝对的,这往往取决于生物的生存环境。
【例如】有翅的昆虫中有时会出现残翅和无翅的突变类型,这类昆虫在正常情况下很难生存下去。但是在经常刮大风的海岛上,这类昆虫却因为不能飞行而避免了被海风吹到海里淹死。
某海岛上残翅和无翅的昆虫
③ 生物的生存环境
英国的曼彻斯特地区有一种桦尺蛾(其幼虫叫桦尺蠖)。它们夜间活动,白天休息在树干上。杂交实验表明,其体色受一对等位基因S和s控制,黑色(S)对浅色(s)是显性的。
在19世纪中叶以前,桦尺蛾几乎都是浅色型的,该种群中S基因的频率很低,在5%以下。到了20世纪中叶,黑色型的桦尺蛾却成了常见的类型,S基因的频率上升到95%以上。
三、自然选择对种群基因频率变化的影响
假设1870年,桦尺蛾种群的基因型频率为SS10%,Ss 20%,ss 70%,S基因的频率为20%。在树干变黑这一环境条件下,假如树干变黑不利于浅色桦尺蛾的生存,使得种群中浅色个体每年减少10%,黑色个体每年增加10%。第2~10年间,该种群每年的基因型频率各是多少?每年的基因频率是多少?(计算结果填入下表)
探究自然选择对种群基因频率变化的影响
第1年 第2年 第3年 第4年 ……
基因型频率 SS 10% 11.5%
Ss 20% 22.9%
ss 70% 65.6%
基因 频率 S 20% 23%
s 80% 77%
70.7%
26%
29.2%
14.7%
56.1%
60.9%
26.1%
73.9%
29.3%
13.1%
升高
降低
思考·讨论
根据上述计算结果,对环境的选择作用的大小进行适当调整,比如,把浅色个体每年减少的数量百分比定高些,重新计算种群基因型频率和基因频率的变化,与步骤2中所得的数据进行比较。
讨论: 1. 树干变黑会影响桦尺蛾种群中浅色个体的出生率吗?为什么?
2. 在自然选择过程中,直接受选择的是基因型还是表型?为什么?
探究自然选择对种群基因频率变化的影响
在自然选择过程中,直接受选择的是生物的表现型;
在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
变异是不定向的
自然选择是定向的
不利变异被淘汰,有利变异逐渐积累
种群的基因频率发生定向的改变
生物朝着一定方向缓慢进化
生物进化的实质是种群基因频率的定向改变。
1. 变异是不定向的,自然选择是定向的(自然选择决定生物进化的方向)。
3. 生物进化的实质是基因频率的定向改变。
2. 自然选择导致基因频率发生改变。
探究抗生素对细菌的选择作用
实验原理
一般情况下,一定浓度的抗生素会杀死细菌,但变异的细菌可能产生耐药性。在实验室连续培养细菌时,如果向培养基中添加抗生素,耐药菌有可能存活下来。
目的要求
通过观察细菌在含有抗生素的培养基上的生长状况,探究抗生素对细菌的选择作用。
实验步骤
①培养皿分区、标号。
③将不含抗生素的纸片和抗生素纸片分别放在平板的不同位置。
②涂布平板。




探究抗生素对细菌的选择作用
④将培养皿倒置于37 ℃的恒温箱中培养12~16 h。
⑥从抑菌圈边缘的菌落上挑取细菌,接种到已灭菌的液体 培养基中培养。重复步骤②~⑤。
⑤观察细菌的生长状况。是否有抑菌圈?测量、记录。
结果分析
①你的数据结果是否支持“耐药菌是普遍存在的”这一说法?
支持。抑菌圈边缘生长的可能是耐药菌。
探究抗生素对细菌的选择作用
②在本实验条件下,耐药菌所产生的变异是有利的还是有害的?
在本实验条件下,一般来说是有利的,有利于生物在特定环境中生存和繁殖的变异在此环境中就是有利变异。
③滥用抗生素有什么后果?
促进耐药菌的产生。
生物多样性
自然选择
基因突变
染色体变异
基因重组
突变
种群基因频率定向改变
生物进化
生物进化的实质是种群基因频率在自然选择作用下的定向改变。
种群基因频率的改变,标志着生物的进化