8.4 三元一次方程组的解法同步练习(含答案)

文档属性

名称 8.4 三元一次方程组的解法同步练习(含答案)
格式 docx
文件大小 408.3KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-02-28 15:13:26

图片预览

文档简介

中小学教育资源及组卷应用平台
8.4三元一次方程组的解法
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.运用加减消元法解方程组,较简单的方法是( )
A.先消去x,再解
B.先消去z,再解
C.先消去y,再解
D.三个方程相加得8x-2y+42=11再解
2.为了奖励学习进步的同学,某班准备购买甲、乙、丙三种不同的笔记本作为奖品,其单价分别为2元、3元、4元,购买这些笔记本需要花60元;经过协商,每种笔记本单价下降0.5元,只花了49元,那么以下哪个结论是正确的(  )
A.乙种笔记本比甲种笔记本少4本
B.甲种笔记本比丙种笔记本多6本
C.乙种笔记本比丙种笔记本多8本
D.甲种笔记本与乙种笔记本共12本
3.三元一次方程组消去一个未知数后,所得二元一次方程组是( )
A. B. C. D.
4.若,则等于( )
A. B. C.2 D.
5.下列各方程组不是三元一次方程组的是( )
A. B. C. D.
6.若方程组的解和的值互为相反数,则的值等于( )
A.0 B.1 C.2 D.3
7.将棱长为1厘米的42个立方体积木拼在一起,构成一个实心的长方体.如果长方体底面的周长为18厘米,那么这个长方体的高是(  )
A.2厘米 B.3厘米 C.6厘米 D.7厘米
8.某班元旦晚会需要购买甲、乙、丙三种装饰品,若购买甲3件,乙5件,丙1件,共需62元,若购甲4件,乙7件,丙1件共需77元.现在购买甲、乙、丙各一件,共需( )元.
A.31 B.32 C.33 D.34
9.一个三位数各位数字的和是14,个位数字与十位数字的和比百位数字大2,若把百位数字与十位数字对调,所得新数比原数小270,则这个三位数是( )
A.635 B.653 C.563 D.536
10.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有(  )种
A.6 B.5 C.4 D.3
二、填空题
11.学校的某社团组织了一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分,其中题a满分10分,题b、题c满分均为15分.竞赛结果,每个学生至少答对了一题,三题全答对的有2人,答对其中两道题的有14人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为27,答对题b的人数与答对题c的人数之和为20,则这个社团的平均成绩是 分.
12.的立方根是 ,方程组的解是
13.一驴友分三次从地出发沿着不同线路(线、线、线)去地,在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等;线、线路程相等,都比线路程多;线总时间等于线总时间的一半;他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完线;在线中穿越丛林、涉水行走和攀登所用时间分别比线上升了.若他用了小时穿越丛林、小时涉水行走和小时攀登走完线,且都为正整数,则 .
14.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为 .
15.已知关于a,b,c的方程组,则= .
16.一个水池有,两个水口,其中为进水口,水口可进水也可出水(水口进出水速度相同).已知单独打开进水口,需要小时将水池由空池注满.若将,两个水口同时打开进水,小时将水池由空池注满;若将水口打开进水,同时水口打开出水,小时将水池由空池注满,则 .
17.有甲、乙、丙三种商品,如果甲购3件,乙2件,丙1件共需420元,购甲1件,乙2件,丙3件共需380元,那么购甲、乙、丙三种商品各一件共需 .
18.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为 .
19.有甲、乙,丙三种货物,若购买甲3件、乙7件、丙1件、共30元;若购买甲4件、乙10件、丙1件,共35元,现在购买甲、乙、丙各1件,共需 元.
20.某超市有甲,乙,丙三种坚果礼盒,它们都是由,,三种坚果组成,甲,乙,丙三种坚果礼盒的成本均为盒内,,三种坚果的成本之和。超市现有甲,乙的数量相等,丙的数量比甲的数量多25%,甲种坚果礼盒内装有种坚果5袋,种坚果1袋,种坚果3袋,乙种坚果礼盒内装有种坚果4袋,种坚果2袋,种坚果6袋,每盒甲种坚果礼盒的成本是1袋种坚果成本的15倍,销售利润率是60%,每盒乙种坚果礼盒的售价是成本的倍,每盒丙种坚果礼盒在成本的基础上提价60%后打八折销售,获利为1袋种坚果成本的5.6倍,如果超市将所有礼盒全部售出,则该超市出售这三种坚果礼盒获得的总利润率为 .
三、解答题
21.现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?
22.已知,当时,,当时,;当时,,求当时,的值.
23.阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:就是方程3x+y=11的一组“好解”;是方程组的一组“好解”.
(1)求方程x+2y=5的所有“好解”;
(2)关于x,y,k的方程组有“好解”吗?若有,请求出对应的“好解”;若没有,请说明理由.
24.根据下面的等式,求出妈妈买回来的鱼、鸭、鸡各花了多少钱.
鸡+鸭+鱼元,
鸡+鱼元,
鸭+鱼元.
25.解方程组并求出使等式ax+y+3z=0成立的a的值.
参考答案:
1.C
2.B
3.A
4.A
5.B
6.C
7.B
8.B
9.A
10.D
11.24
12. 2
13.6
14.
15.9
16.
17.200元.
18.45%
19.20
20.45.31%.
21.面值为2元、1元和5角的人民币分别为7张、13张和4张.
22.28
23.(1)或或
(2)有,或或或
24.妈妈买回来的鱼、鸭、鸡分别花了6.4元,15元,14元.
25..
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)