(人教A版2019选择性必修三)专题6-4 排列与组合(重难点题型检测)(原卷+解析卷)

文档属性

名称 (人教A版2019选择性必修三)专题6-4 排列与组合(重难点题型检测)(原卷+解析卷)
格式 zip
文件大小 70.3KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-01-16 11:27:20

文档简介

专题6.4 排列与组合(重难点题型检测)
参考答案与试题解析
一.选择题(共8小题,满分24分,每小题3分)
1.(3分)(2022秋·吉林四平·高二阶段练习)下列问题是排列问题的是( )
A.10个朋友聚会,每两人握手一次,一共握手多少次?
B.平面上有2022个不同的点,且任意三点不共线,连接任意两点可以构成多少条线段?
C.集合的含有三个元素的子集有多少个?
D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?
【解题思路】根据排列的定义逐个选项辨析即可.
【解答过程】A中握手次数的计算与次序无关,不是排列问题;
B中线段的条数计算与点的次序无关,不是排列问题;
C中子集的个数与该集合中元素的次序无关,不是排列问题;
D中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是2种不同的选法,因此是排列问题.
故选:D.
2.(3分)(2022·全国·高三专题练习)已知n,m为正整数,且,则在下列各式中错误的是( )
A.; B.; C.; D.
【解题思路】据组合数的性质及排列数公式计算可得
【解答过程】解:对于A,,故正确;
对于B,因为,所以,故正确;
对于C,因为n,m为正整数,且,
所以令,则,,此时,故错误;
对于D,,故正确;
故选:C.
3.(3分)(2022春·江苏·高二阶段练习)不等式的解为( )
A. B.
C. D.
【解题思路】根据组合数和排列数的计算公式,结合的取值范围,即可求得结果.
【解答过程】由,得且,
化简整理得,解得,又因为,所以.
故选:C.
4.(3分)(2022春·吉林长春·高二期中)从5本不同的书中选出3本分别送3位同学每人一本,不同的方法总数是( )
A.10 B.60 C.243 D.15
【解题思路】根据排列定义即可求解.
【解答过程】不同的方法总数是,
故选:B.
5.(3分)(2023·全国·高三专题练习)2022年北京冬季奥运会期间,从3名男志愿者和2名女志愿者中选4名去支援“冰壶”“花样滑冰”“短道速滑”三项比赛志愿者工作,其中冰壶项目需要一男一女两名,花样滑冰和短道速滑各需要一名,男女不限.则不同的支援方法的种数是( )
A.36 B.24 C.18 D.42
【解题思路】利用分步乘法计数原理及组合公式求解即可.
【解答过程】第一步从3名男志愿者和2名女志愿者各选一名志愿者去支援冰壶项目,选法共有种;
第二步从剩余的3人中选一人去支援花样滑冰,选法共有种;
第三步从剩余的2人中选一人去支援短道速滑,选法共有种;
依据分步乘法计数原理可知,不同的支援方法的种数是,
故选:.
6.(3分)(2022秋·吉林四平·高二阶段练习)中国古代中的“礼、乐、射、御、书、数”合称“六艺”.为传承和弘扬中华优秀传统文化,某校国学社团开展“六艺”讲座活动,每艺安排一次讲座,共讲六次.讲座次序要求“礼”在第一次,“数”不在最后,“射”和“御”两次相邻,则“六艺”讲座不同的次序共有( )
A.48种 B.36种 C.24种 D.20种
【解题思路】由题意,将“射”和“御”捆绑看作一个元素与“乐”和“书”进行全排列,再将“射”和“御”交换位置,最后安排“数”, 根据分步计数原理即可求解.
【解答过程】解:因为“礼”在第一次,所以只需安排后面五次讲座的次序即可,
又“数”不在最后,“射”和“御”两次相邻,
所以先将“射”和“御”捆绑看作一个元素与“乐”和“书”进行全排列有种排法,再将“射”和“御”交换位置有种排法,最后安排“数”有种排法,
所以根据分步计数原理共有种排法,
故选:B.
7.(3分)(2023·全国·高二专题练习)绿水青山就是金山银山,浙江省对“五水共治”工作落实很到位,效果非常好.现从含有甲的5位志愿者中选出4位到江西,湖北和安徽三个省市宣传,每个省市至少一个志愿者.若甲不去安徽,其余志愿者没有条件限制,共有多少种不同的安排方法( )
A.228 B.132 C.180 D.96
【解题思路】本题分抽取的4人中含甲和不含甲两大类讨论,采取捆绑法分析情况,再利用加法和乘法原理得到所有情况即可.
【解答过程】4人去3个省份,且每个省至少一个人则必会有两人去同一省份,
若抽取的4人中不含甲,在这四人中任意取两人进行捆绑,则共有种,
②若4人中含有甲,则在剩余的4人中抽取3人,共有种,接下来若甲和另1人去同一省份,则共有种,若甲单独一人去一个省份,则共有种,根据加法和乘法原理可得共有,此类情况共有种
综上共有种.
故选:B.
8.(3分)(2022·全国·高三专题练习)现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是( )
A.每人都安排一项工作的不同方法数为54
B.每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为
C.如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为
D.每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是
【解题思路】对于选项 ,每人有4种安排法,故有种;对于选项 ,5名同学中有两人工作相同,先选人再安排;对于选项,先分组再安排;对于选项 ,以司机人数作为分类标准进行讨论即可.
【解答过程】解:①每人都安排一项工作的不同方法数为,即选项错误,
②每项工作至少有一人参加,则不同的方法数为,即选项B错误,
③如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为:(),即选项C错误,
④分两种情况:第一种,安排一人当司机,从丙、丁、戊选一人当司机有 ,从余下四人中安排三个岗位,
故有;第二种情况,安排两人当司机,从丙、丁、戊选两人当司机有 ,
从余下三人中安排三个岗位,故有;所以每项工作至少有一人参加,
甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是,
即选项D正确,
故选:D.
二.多选题(共4小题,满分16分,每小题4分)
9.(4分)(2022春·重庆万州·高二阶段练习)下列等式正确的是( )
A. B.
C. D.
【解题思路】利用排列数公式、组合数公式,逐项计算判断作答.
【解答过程】对于A,,A正确;
对于B,,B正确;
对于C,,而与不一定相等,则与不一定相等,C不正确;
对于D,,D正确.
故选:ABD.
10.(4分)(2022春·浙江宁波·高二期中)如图,在某城市中,,两地之间有整齐的方格形道路网,其中,,,是道路网中位于一条对角线上的4个交汇处.今在道路网,处的甲 乙两人分别要到,处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达,处为止,则下列说法正确的有( )
A.甲从到达处的走法种数为20
B.甲从必须经过到达处的走法种数为9
C.甲乙两人能在处相遇的走法种数36
D.甲,乙两人能相遇的走法种数为162
【解题思路】由到的最短路径向上3步,向右3步,问题为6步中任选3步向上或向右走,根据各选项的描述,同理分析各种走法的种数,即可确定答案.
【解答过程】A:从到达只需向上、向右各走3步,即共走6步,走法种数为种,正确;
B:从到的走法有,再到达的走法有,共有 种,正确;
C:由上,甲经过的走法有9种,同理乙经过的走法有9种,此处相遇共有81种走法,错误;
D:要使甲乙以相同的速度相遇,则相遇点,,,中的一个,而在、相遇各有1种走法,在,相遇各有81种走法,故甲、乙相遇的走法有种,错误.
故选:AB.
11.(4分)(2022春·江苏南通·高二阶段练习)2022年2月5日晩,在北京冬奥会短道速滑混合团体接力决赛中,中国队率先冲过终点,为中国体育代表团拿到本届奥运会首枚金牌.赛后,武大靖,任子威,曲春雨,范可欣,张雨婷5名运动员从左往右排成一排合影留念,下列结论正确的是( )
A.武大靖与张雨婷相邻,共有48种排法
B.范可欣与曲春雨不相邻,共有72种排法
C.任子威在范可欣的右边,共有120种排法
D.任子威不在最左边,武大靖不在最右边,共有78种排法
【解题思路】利用分步乘法计数原理结合排列与排列数,逐项分析判断即可.
【解答过程】解:A项中,武大靖与张雨婷相邻,将武大靖与张雨婷排在一起有种排法,
再将二人看成一个整体与其余三人全排列,有种排法,
由分步乘法计数原理得,共有(种)排法,故选项A正确;
B项中,范可欣与曲春雨不相邻,先将其余三人全排列,有种排法,
再将范可欣与曲春雨插入其余三人形成的4个空位中,有种排法,
由分步乘法计数原理得,共有(种)排法,故选项B正确;
C项中,任子威在范可欣的右边,先从五个位置中选出三个位置排其余三人,有种排法,
剩下两个位置排任子威、范可欣,只有1种排法,
所以任子威在范可欣的右边,共有(种)排法,故选项C错误;
D项中,武大靖,任子威,曲春雨,范可欣,张雨婷5人全排列,有种排法,
任子威在最左边,有种排法,武大靖在最右边,有种排法,
任子威在最左边,且武大靖在最右边,有种排法,
所以任子威不在最左边,武大靖不在最右边,共有(种)排法,故选项D正确.
故选:ABD.
12.(4分)(2022·全国·高三专题练习)为响应政府部门疫情防控号召,某红十字会安排甲 乙 丙 丁4名志愿者奔赴,,三地参加防控工作,则下列说法正确的是( )
A.不同的安排方法共有64种
B.若恰有一地无人去,则不同的安排方法共有42种
C.若甲 乙两人都不能去A地,且每地均有人去,则不同的安排方法共有44种
D.若该红十字会又计划为这三地捐赠20辆救护车(救护车相同),且每地至少安排一辆,则不同的安排方法共有171种
【解题思路】根据分类、分布计数原理和排列、组合,逐项判定,即可求解.
【解答过程】对于A中,安排甲 乙 丙 丁4名志愿者奔赴,,三地参加防控工作,每人都有3种安排方法,则不同的安排方法共有(种),所以A错误;
对于B中,若恰有一地无人去,则需先在三地中选出两地,再将4人安排到这两个地方,不同的安排方法有(种),所以B正确.
对于C中,根据题意,需将4人分为3组,若甲 乙在同一组,有1种分组方法,
又甲 乙两人不能去地,所以安排甲 乙一组到地或地,有2种情况,
剩余2组安排到其余2地,有种情况,此时不同的安排方法有(种);
若甲 乙不在同一组,有种分组方法,又甲 乙两人不能去A地,
所以安排没有甲 乙的一组去地,甲 乙所在的两组安排到,两地,有种情况,
此时不同的安排方法有(种),则不同的安排方法共有(种),
所以C错误;
对于D中,只需将20辆救护车排成一排,在形成的19个间隙中插入挡板,将20辆救护车分为3组,依次对应,,三地即可,此时不同的安排方法有(种),所以D正确.
故选:BD.
三.填空题(共4小题,满分16分,每小题4分)
13.(4分)(2022秋·江西上饶·高二阶段练习)若,则 或 .
【解题思路】根据组合数的性质得到方程,解得即可;
【解答过程】因为,
所以或,
解得或,经检验成立,
故答案为:或.
14.(4分)(2022春·北京顺义·高二阶段练习)从5名男生和2名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 25 种.
【解题思路】计算反面全是男生的方法数,运用排除法即可.
【解答过程】从5名男生和2名女生中,选出3名代表的方法数为,
从5名男生和2名女生中,选出3名代表全是男生的方法数为,
所以从5名男生和2名女生中,选出3名代表,要求至少包含1名女生的方法数为

故答案为:25.
15.(4分)(2022春·河北保定·高二阶段练习)某单位计划安排6名志愿者在人民路上相邻的6个十字路口进行“创建文明城市”的宣传活动,每个路口安排一名志愿者,则甲、乙两名志愿者必须在相邻两个路口,丙不在第一个和最后一个路口的安排方式共有 144 种.
【解题思路】将甲、乙两名志愿者看作一个整体,再与其余四名志愿者全排列,减去甲、乙两名志愿者必须在相邻两个路口,且丙在第一个或最后一个路口的情况求解.
【解答过程】当甲、乙两名志愿者必须在相邻两个路口时,利用“捆绑法”,
将甲、乙两名志愿者看作一个整体,再与其余四名志愿者全排列,
一共有种不同的安排方式.
当甲、乙两名志愿者必须在相邻两个路口,且丙在第一个或最后一个路口时,
一共有种不同的安排方式.
故所求安排方式一共有种.
故答案为:144.
16.(4分)(2023·全国·高二专题练习)某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1人参加“演讲团”的不同参加方法数为 5040 .
【解题思路】参加“演讲团”人数分为有1人或无人的情况,而每种情况又各自包含2种情况,分别求出对应的方法数,结合计数原理计算即可.
【解答过程】若有人参加“演讲团”,则从人选人参加该社团,其余人去剩下个社团,人数安排有种情况:和,
故人参加“演讲团”的不同参加方法数为;
若无人参加“演讲团”,则人参加剩下个社团,人数安排安排有 种情况:和,故无人参加“演讲团”的不同参加方法数为,
故满足条件的方法数为,
故答案为:5040.
四.解答题(共6小题,满分44分)
17.(6分)(2022春·河北石家庄·高二期中)(1)计算:;
(2)若,求正整数.
【解题思路】(1)(2)按照排列数公式计算即可.
【解答过程】(1);
(2)∵,∴,
又,化简得,解得.
18.(6分)(2022·全国·高三专题练习)解下列不等式或方程
(1)
(2)
【解题思路】(1)先求出,解不等式得到,从而得到答案;
(2)先得到,解方程得到或2,舍去不合题意的根.
【解答过程】(1)
由题意得:,解得:,
,即,
解得:,结合,可得:
(2)
,则,
即,
解得:(舍去)或2,
故方程的解为:m=2.
19.(8分)(2022秋·吉林四平·高二阶段练习)现有8个人(5男3女)站成一排.
(1)其中甲必须站在排头有多少种不同排法?
(2)女生必须排在一起,共有多少种不同的排法?
(3)其中甲、乙两人不能排在两端有多少种不同的排法?
(4)其中甲在乙的左边有多少种不同的排法?
(5)甲、乙不能排在前3位,有多少种不同排法?
(6)女生两旁必须有男生,有多少种不同排法?
【解题思路】(1)分两步,先考虑甲必须站在排头的特殊要求,用特殊元素优先法可解;
(2)女生必须排在一起,用捆绑法求解;
(3)甲、乙两人不能排在两端,用插空法求解;
(4)甲在乙的左边,可采用倍缩法求解;
(5)甲、乙不能排在前3位,用特殊元素或特殊位置优先法可解;
(6)女生两旁必须有男生,用插空法求解.
【解答过程】(1)根据题意,甲必须站在排头,有1种情况,将剩下的7人全排列,有种情况,
则甲必须站在排头有种排法;
(2)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有种情况,
将这个整体与5名男生全排列,有种情况,则女生必须排在一起的排法有种;
(3)根据题意,将甲、乙两人安排在中间6个位置,有种情况,将剩下的6人全排列,有种情况,
则甲、乙两人不能排在两端有种排法;
(4)根据题意,将8人全排列,有种情况,其中甲在乙的左边与甲在乙的右边的情况数目相同,
则甲在乙的左边有种不同的排法;
(5)根据题意,将甲、乙两人安排在后面的5个位置,有种情况,
将剩下的6人全排列,有种情况,甲、乙不能排在前3位,有种不同排法;
(6)根据题意,将5名男生全排列,有种情况,排好后除去2端有4个空位可选,在4个空位中任选3个,安排3名女生,有种情况,
则女生两旁必须有男生,有种不同排法.
20.(8分)(2022秋·江西宜春·高三阶段练习)现有男选手3名,女选手5名,其中男女队长各1名.选派4人外出比赛,在下列情形中各有多少种选派方法?(结果用数字表示)
(1)至少有1名男选手;
(2)既要有队长,又要有男选手.
【解题思路】(1)考虑“至少有1名男选手”的对立事件进行求解;
(2)按是否选入男队长分2种情况讨论,再由加法原理求解即可.
【解答过程】(1)
由题意可知,“至少有1名男选手” 的对立事件为“全为女选手”,
从8人中任选4人,有种选法,其中全部是女选手有种选法,
所以“至少有1名男选手”的选法有种;
(2)
①当选男队长时,其他人选法任意,有种,
②当不选男队长,必选女队长时,有种,其中不含男选手的选法有种,
则不选男队长的选法有种,
所以既要有队长,又要有男选手的选法有种.
21.(8分)(2022·全国·高三专题练习)用0、1、2、3四个数字组成没有重复数字的自然数.
(1)把这些自然数从小到大排成一个数列,1230是这个数列的第几项?
(2)其中的四位数中偶数有多少个?它们各个数位上的数字之和是多少?它们的和是多少?
【解题思路】(1)利用分步乘法计数原理讨论1位自然数、2位自然数、3位自然数、4位自然数的情况即可.
(2)利用分步乘法和分类加法计数原理计算即可.
【解答过程】(1)1位自然数有个;
2位自然数有个;
3位自然数有个;
4位自然数中小于1230的有“10XX”型个,1203共3个;
所以1230是此数列的第项.
(2)四位数偶数有个位是0和个位是2两种情况,
其中个位是0有种;个位不是0有种.
所以四位偶数共有10个.
它们各个数位上的数字之和为;
这10个偶数中,个位是2的有4个;
当个位是0时由得十位、百位、千位是1,2,3的各有两种;
当个位不是0时,由得千位是1,3的个两种,百位、十位是1,3的各1种;
所以它们的和为.
22.(8分)(2022春·河北石家庄·高二阶段练习)中华文化源远流长,为了让青少年更好地了解中国的传统文化,某培训中心计划利用暑期开设“围棋”、“武术”、“书法”、“剪纸”、“京剧”、“刺绣”六门体验课程.
(1)若体验课连续开设六周,每周一门,求“京剧”和“剪纸”课程排在不相邻的两周的所有排法种数;
(2)现有甲、乙、丙三名学生报名参加暑期的体验课程,每人都选两门课程,甲和乙有一门共同的课程,丙和甲、乙的课程都不同,求所有选课的种数;
(3)计划安排A、B、C、D、E五名教师教这六门课程,每名教师至少任教一门课程,教师A不任教“围棋”课程,教师B只能任教一门课程,求所有课程安排的种数.
【解题思路】(1)先排剩余四门课,“京剧”和“剪纸”课程不相邻,用插空法求解;
(2)由分步乘法原理求解;
(3)按甲所教科目的数量分类,然后由分类加法计数原理求解.
【解答过程】(1)
解:第一步,先将另外四门课排好,有种情况;
第二步,将“京剧”和“剪纸”课程分别插入5个空隙中,有种情况;
所以“京剧”和“剪纸”课程排在不相邻的两周的排法有种;
(2)
解:第一步,先将甲和乙的不同课程排好,有种情况;
第二步,将甲和乙的相同课程排好,有种情况;
第三步,因为丙和甲、乙的课程都不同,所以丙的排法种情况;
因此,所有选课种数为.
(3)
解:①当A只任教1科时:先排A任教科目,有种;再从剩下5科中排B的任教科目,有种;接下来剩余4科中必有2科为同一名老师任教,分三组全排列,共有种;所以当A只任教1科时,共有种;
②当A任教2科时:先选A任教的2科有中,这样6科分为4组共有种,
所以,当A任教2科时,共有种,
综上,A不任教“围棋”的课程安排方案有1140种.专题6.4 排列与组合(重难点题型检测)
【人教A版2019】
考试时间:60分钟;满分:100分
姓名:___________班级:___________考号:___________
考卷信息:
本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!
一.选择题(共8小题,满分24分,每小题3分)
1.(3分)(2022秋·吉林四平·高二阶段练习)下列问题是排列问题的是( )
A.10个朋友聚会,每两人握手一次,一共握手多少次?
B.平面上有2022个不同的点,且任意三点不共线,连接任意两点可以构成多少条线段?
C.集合的含有三个元素的子集有多少个?
D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?
2.(3分)(2022·全国·高三专题练习)已知n,m为正整数,且,则在下列各式中错误的是( )
A.; B.; C.; D.
3.(3分)(2022春·江苏·高二阶段练习)不等式的解为( )
A. B.
C. D.
4.(3分)(2022春·吉林长春·高二期中)从5本不同的书中选出3本分别送3位同学每人一本,不同的方法总数是( )
A.10 B.60 C.243 D.15
5.(3分)(2023·全国·高三专题练习)2022年北京冬季奥运会期间,从3名男志愿者和2名女志愿者中选4名去支援“冰壶”“花样滑冰”“短道速滑”三项比赛志愿者工作,其中冰壶项目需要一男一女两名,花样滑冰和短道速滑各需要一名,男女不限.则不同的支援方法的种数是( )
A.36 B.24 C.18 D.42
6.(3分)(2022秋·吉林四平·高二阶段练习)中国古代中的“礼、乐、射、御、书、数”合称“六艺”.为传承和弘扬中华优秀传统文化,某校国学社团开展“六艺”讲座活动,每艺安排一次讲座,共讲六次.讲座次序要求“礼”在第一次,“数”不在最后,“射”和“御”两次相邻,则“六艺”讲座不同的次序共有( )
A.48种 B.36种 C.24种 D.20种
7.(3分)(2023·全国·高二专题练习)绿水青山就是金山银山,浙江省对“五水共治”工作落实很到位,效果非常好.现从含有甲的5位志愿者中选出4位到江西,湖北和安徽三个省市宣传,每个省市至少一个志愿者.若甲不去安徽,其余志愿者没有条件限制,共有多少种不同的安排方法( )
A.228 B.132 C.180 D.96
8.(3分)(2022·全国·高三专题练习)现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是( )
A.每人都安排一项工作的不同方法数为54
B.每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为
C.如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为
D.每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是
二.多选题(共4小题,满分16分,每小题4分)
9.(4分)(2022春·重庆万州·高二阶段练习)下列等式正确的是( )
A. B.
C. D.
10.(4分)(2022春·浙江宁波·高二期中)如图,在某城市中,,两地之间有整齐的方格形道路网,其中,,,是道路网中位于一条对角线上的4个交汇处.今在道路网,处的甲 乙两人分别要到,处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达,处为止,则下列说法正确的有( )
A.甲从到达处的走法种数为20
B.甲从必须经过到达处的走法种数为9
C.甲乙两人能在处相遇的走法种数36
D.甲,乙两人能相遇的走法种数为162
11.(4分)(2022春·江苏南通·高二阶段练习)2022年2月5日晩,在北京冬奥会短道速滑混合团体接力决赛中,中国队率先冲过终点,为中国体育代表团拿到本届奥运会首枚金牌.赛后,武大靖,任子威,曲春雨,范可欣,张雨婷5名运动员从左往右排成一排合影留念,下列结论正确的是( )
A.武大靖与张雨婷相邻,共有48种排法
B.范可欣与曲春雨不相邻,共有72种排法
C.任子威在范可欣的右边,共有120种排法
D.任子威不在最左边,武大靖不在最右边,共有78种排法
12.(4分)(2022·全国·高三专题练习)为响应政府部门疫情防控号召,某红十字会安排甲 乙 丙 丁4名志愿者奔赴,,三地参加防控工作,则下列说法正确的是( )
A.不同的安排方法共有64种
B.若恰有一地无人去,则不同的安排方法共有42种
C.若甲 乙两人都不能去A地,且每地均有人去,则不同的安排方法共有44种
D.若该红十字会又计划为这三地捐赠20辆救护车(救护车相同),且每地至少安排一辆,则不同的安排方法共有171种
三.填空题(共4小题,满分16分,每小题4分)
13.(4分)(2022秋·江西上饶·高二阶段练习)若,则 .
14.(4分)(2022春·北京顺义·高二阶段练习)从5名男生和2名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种.
15.(4分)(2022春·河北保定·高二阶段练习)某单位计划安排6名志愿者在人民路上相邻的6个十字路口进行“创建文明城市”的宣传活动,每个路口安排一名志愿者,则甲、乙两名志愿者必须在相邻两个路口,丙不在第一个和最后一个路口的安排方式共有 种.
16.(4分)(2023·全国·高二专题练习)某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1人参加“演讲团”的不同参加方法数为 .
四.解答题(共6小题,满分44分)
17.(6分)(2022春·河北石家庄·高二期中)(1)计算:;
(2)若,求正整数.
18.(6分)(2022·全国·高三专题练习)解下列不等式或方程
(1)
(2)
19.(8分)(2022秋·吉林四平·高二阶段练习)现有8个人(5男3女)站成一排.
(1)其中甲必须站在排头有多少种不同排法?
(2)女生必须排在一起,共有多少种不同的排法?
(3)其中甲、乙两人不能排在两端有多少种不同的排法?
(4)其中甲在乙的左边有多少种不同的排法?
(5)甲、乙不能排在前3位,有多少种不同排法?
(6)女生两旁必须有男生,有多少种不同排法?
20.(8分)(2022秋·江西宜春·高三阶段练习)现有男选手3名,女选手5名,其中男女队长各1名.选派4人外出比赛,在下列情形中各有多少种选派方法?(结果用数字表示)
(1)至少有1名男选手;
(2)既要有队长,又要有男选手.
21.(8分)(2022·全国·高三专题练习)用0、1、2、3四个数字组成没有重复数字的自然数.
(1)把这些自然数从小到大排成一个数列,1230是这个数列的第几项?
(2)其中的四位数中偶数有多少个?它们各个数位上的数字之和是多少?它们的和是多少?
22.(8分)(2022春·河北石家庄·高二阶段练习)中华文化源远流长,为了让青少年更好地了解中国的传统文化,某培训中心计划利用暑期开设“围棋”、“武术”、“书法”、“剪纸”、“京剧”、“刺绣”六门体验课程.
(1)若体验课连续开设六周,每周一门,求“京剧”和“剪纸”课程排在不相邻的两周的所有排法种数;
(2)现有甲、乙、丙三名学生报名参加暑期的体验课程,每人都选两门课程,甲和乙有一门共同的课程,丙和甲、乙的课程都不同,求所有选课的种数;
(3)计划安排A、B、C、D、E五名教师教这六门课程,每名教师至少任教一门课程,教师A不任教“围棋”课程,教师B只能任教一门课程,求所有课程安排的种数.