专题一 函数与导数 培优点1-4-2024年高考数学大二轮专题复习讲义(含解析)(4份打包)

文档属性

名称 专题一 函数与导数 培优点1-4-2024年高考数学大二轮专题复习讲义(含解析)(4份打包)
格式 zip
文件大小 174.5KB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2024-01-16 21:55:23

文档简介

培优点1 切线放缩
在高考压轴题中,经常考查与导数有关的不等式问题,这些问题可以用常规方法求解,也可以用切线不等式进行放缩.导数切线放缩法是一种非常实用的数学方法,它可以帮助我们更好地理解函数的性质和变化规律,更能使问题简单化,利用切线不等式进行求解,能起到事半功倍的效果.
考点一 单切线放缩
常见的切线放缩: x∈R都有ex≥x+1.当x>-1时,ln(x+1)≤x.当x>0时,x>sin x;当x<0时,x例1 (2023·重庆模拟)已知函数f(x)=sin x-aln(x+1).
(1)若a=1,证明:当x∈[0,1]时,f(x)≥0;
(2)若a=-1,证明:当x∈[0,+∞)时,f(x)≤2ex-2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 该方法适用于凹函数与凸函数且它们的凹凸性相反的问题(拆成两个函数),两函数有斜率相同的切线,这是切线放缩的基础,引入一个中间量,分别证明两个不等式成立,然后利用不等式的传递性即可,难点在合理拆分函数,寻找它们斜率相等的切线隔板.
跟踪演练1 (2023·柳州模拟)已知函数f(x)=ln x+-2x.
(1)当a>0时,讨论f(x)的单调性;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)证明:ex+>f(x).
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点二  双切线放缩
例2 (2023·福州模拟)已知函数f(x)=xln x-x.若f(x)=b有两个实数根x1,x2,且x1________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 含有两个零点的f(x)的解析式(可能含有参数x1,x2),告知方程f(x)=b有两个实根,要证明两个实根之差小于(或大于)某个表达式.求解策略是画出f(x)的图象,并求出f(x)在两个零点处(有时候不一定是零点处)的切线方程(有时候不是找切线,而是找过曲线上某两点的直线),然后严格证明曲线f(x)在切线(或所找直线)的上方或下方,进而对x1,x2作出放大或者缩小,从而实现证明.
跟踪演练2 (2023·山东省实验中学模拟)已知函数f(x)=(x+1)(ex-1),若函数g(x)=f(x)-m(m>0)有两个零点x1,x2,且x1________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________培优点2 隐零点问题
导函数的零点在很多时候是无法直接求解出来的,我们称之为“隐零点”,既能确定其存在,但又无法用显性的代数进行表达.这类问题的解题思路是对函数的零点设而不求,通过整体代换和过渡,再结合题目条件解决问题.
考点一 不含参函数的隐零点问题
例1 (2023·咸阳模拟)已知f(x)=(x-1)2ex-x3+ax(x>0)(a∈R).
(1)讨论函数f(x)的单调性;
(2)当a=0时,判定函数g(x)=f(x)+ln x-x2零点的个数,并说明理由.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 已知不含参函数f(x),导函数方程f′(x)=0的根存在,却无法求出,利用零点存在定理,判断零点存在,设方程f′(x)=0的根为x0,则①有关系式f′(x0)=0成立,②注意确定x0的合适范围.
跟踪演练1 (2023·天津模拟)已知函数f(x)=ln x-ax+1,g(x)=x(ex-x).
(1)若直线y=2x与函数f(x)的图象相切,求实数a的值;
(2)当a=-1时,求证:f(x)≤g(x)+x2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点二 含参函数的隐零点问题
例2 (2023·包头模拟)已知函数f(x)=aex-ln(x+1)-1.
(1)当a=e时,求曲线y=f(x)在点(0,f(0))处的切线与两坐标轴所围成的三角形的面积;
(2)证明:当a>1时,f(x)没有零点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 已知含参函数f(x,a),其中a为参数,导函数方程f′(x,a)=0的根存在,却无法求出,设方程f′(x)=0的根为x0,则①有关系式f′(x0)=0成立,该关系式给出了x0,a的关系;②注意确定x0的合适范围,往往和a的范围有关.
跟踪演练2 (2023·石家庄模拟)已知函数f(x)=x-ln x-2.
(1)讨论函数f(x)的单调性;
(2)若对任意的x∈(1,+∞),都有xln x+x>k(x-1)成立,求整数k的最大值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________培优点1 切线放缩
例1 证明 (1)首先证明sin x≤x,x∈[0,+∞),证明如下:
构造j(x)=sin x-x,x∈[0,+∞),
则j′(x)=cos x-1≤0恒成立,
故j(x)=sin x-x在[0,+∞)上单调递减,
故j(x)≤j(0)=0,
所以sin x≤x,x∈[0,+∞).
当a=1时,f(x)=sin x-ln(x+1),x∈[0,1],
f′(x)=cos x-=1-2sin2-≥1-22-
=1--
≥1--(0≤x≤1),
故f′(x)≥=≥0在x∈[0,1]上恒成立,
所以f(x)在[0,1]上单调递增,
故f(x)≥f(0)=0.
(2)令g(x)=(2ex-2)-f(x),x∈[0,+∞).
当a=-1时,g(x)=2ex-2-sin x-ln(x+1)=2(ex-x-1)+x-sin x+x-ln(x+1),
下证:ex-x-1≥0(x≥0),x-sin x≥0(x≥0),x-ln(x+1)≥0(x≥0),且在x=0处取等号,
令r(x)=ex-x-1(x≥0),则r′(x)=ex-1≥0,故r(x)=ex-x-1在[0,+∞)上单调递增,故r(x)≥r(0)=0,且在x=0处取等号,
由(1)知j(x)=sin x-x在[0,+∞)上单调递减,
故j(x)≤j(0)=0,且在x=0处取等号,
令t(x)=x-ln(x+1)(x≥0),
则t′(x)=1-=≥0,
故t(x)=x-ln(x+1)在[0,+∞)上单调递增,故t(x)≥t(0)=0,且在x=0处取等号,
综上有g(x)=2(ex-x-1)+x-sin x+x-ln(x+1)≥0,且在x=0处取等号,即(2ex-2)-f(x)≥0,
即证f(x)≤2ex-2.
跟踪演练1 (1)解 由题意可知x>0,
f′(x)=--2=-,
对于二次函数y=2x2-x+a,
Δ=1-8a.
当a≥时,Δ≤0,f′(x)≤0恒成立,
f(x)在(0,+∞)上单调递减;
当0分别是x1=,x2=,当x∈
时,f′(x)>0,f(x)在上单调递增;当x∈∪时,f′(x)<0,
f(x)在和上单调递减.
综上,当a≥时,f(x)在(0,+∞)上单调递减;当0上单调递减.
(2)证明 要证ex+>f(x),
即证ex>ln x+2.
不妨设h(x)=ex-(x+1),
则h′(x)=ex-1,h′(0)=0,
当x<0时,h′(0)<0,
当x>0时,h′(0)>0,
因此h(x)≥h(0)=0,ex-(x+1)≥0恒成立.
令m(x)=ln x-x+1,
m′(x)=-1=,
当0m′(x)>0,m(x)单调递增,
当x>1时,
m′(x)<0,m(x)单调递减,
故当x=1时,m(x)取得最大值m(1)=0,因此ln x-x+1≤0,
则ex-(x+1)+[x-(ln x+1)]
=ex-(ln x+2)>0恒成立(等号成立的条件不一致,故舍去),
即ex>ln x+2.从而不等式得证.
例2 证明 f(x)的定义域为(0,+∞),f′(x)=ln x.
令f′(x)>0,得x>1;
令f′(x)<0得,0所以f(x)在区间(1,+∞)上单调递增,在(0,1)上单调递减.
因为f(x)=b有两个实数根x1,x2,且x1所以0先证不等式x2-x1<2b+e+,
因为f(e)=0,f =-,
f′(e)=1,f′=-1,
所以曲线y=f(x)在x=和x=e处的切线分别为l1:y=-x-和l2:y=x-e,如图,
INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\7-65.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\7-65.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\7-65.TIF" \* MERGEFORMATINET
令g(x)=f(x)-=xln x+,0令g′(x)>0,则令g′(x)<0,则0所以g(x)在上单调递减,在上单调递增,
所以g(x)≥g=0,
所以f(x)≥-x-在(0,1)上恒成立,
设直线y=b与直线l1交点的横坐标为x′1,则x′1≤x1,
设直线y=b与直线l2交点的横坐标为x′2,
同理可证x2≤x′2,
因为x′1=-b-,x′2=b+e,
所以x2-x1=b+e-
=2b+e+(两个等号不同时成立),
因此x2-x1<2b+e+.
再证不等式x2-x1>be+e,
函数图象f(x)上有两点A(1,-1),B(e,0),
设直线y=b与直线OA:y=-x,AB:y=(x-e)的交点的横坐标分别为x3,x4,易证x1所以x2-x1>x4-x3=(e-1)b+e-(-b)=be+e.
综上可得be+e跟踪演练2 证明 f(x)=(x+1)(ex-1),
令f(x)=0,有x1=-1,x2=0,
f′(x)=ex(x+2)-1,
f′(-1)=-1+,
f′(0)=1,设曲线y=f(x)在(-1,0)处的切线方程为y=h(x),
则h(x)=f′(-1)(x+1)=(x+1),
令F(x)=f(x)-h(x)
=(x+1),
则F′(x)=(x+2)ex-,
令m(x)=F′(x)=(x+2)ex-,
则m′(x)=(x+3)ex,
所以当x<-3时,m′(x)<0;
当x>-3时,m′(x)>0,
所以F′(x)在(-∞,-3)上单调递减,
在(-3,+∞)上单调递增,
当x→-∞时,F′(x)→-,
又F′(-1)=0,
所以当x<-1时,F′(x)<0,F(x)单调递减;
当x>-1时,F′(x)>0,F(x)单调递增,
所以F(x)≥F(-1)=0,所以f(x)≥h(x)恒成立,则f(x1)≥h(x1),
设h(x)=m的根为x3,
则x3=-1+,
又h(x)单调递减,
且m=h=f(x1)≥h(x1),
所以x3≤x1,
设曲线y=f(x)在(0,0)处的切线为y=t(x),
则t(x)=x,
令G(x)=f(x)-t(x)
=(x+1)(ex-1)-x,
则G′(x)=(x+2)ex-2,
依据F′(x)的单调性可知,G′(x)在(-∞,-3)上单调递减,在(-3,+∞)上单调递增,
当x→-∞时,G′(x)→-2,
且G′(0)=0,
所以G(x)在(-∞,0)上单调递减,
在(0,+∞)上单调递增,
所以G(x)≥G(0)=0,
所以f(x)≥t(x)恒成立,所以f(x2)≥t(x2),
设t(x)=m的根为x4,则x4=m,
又函数t(x)单调递增,
且m=t(x4)=f(x2)≥t(x2),所以x4≥x2,所以x2-x1≤x4-x3=m-
=1+=1+2m+,
即证x2-x1≤1+2m+.
培优点2 隐零点问题
例1 解 (1)由题知,
f′(x)=(x2-1)ex-a(x2-1)
=(x-1)(x+1)(ex-a).
若a≤1,当0当x>1时,f′(x)>0,
∴f(x)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增;
若1当01时,f′(x)>0;
当ln a∴f(x)在区间(0,ln a)上单调递增,在区间(ln a,1)上单调递减,在区间(1,+∞)上单调递增;
若a=e,f′(x)≥0,
∴f(x)在定义域上是增函数;
若a>e,即ln a>1,
当0ln a时,f′(x)>0;
当1∴f(x)在区间(0,1)上单调递增,在区间(1,ln a)上单调递减,在区间(ln a,+∞)上单调递增.
(2)当a=0时,g(x)=ln x-x2+(x-1)2ex,定义域为(0,+∞),
∴g′(x)=-x+(x2-1)ex
=(x+1)(x-1),
设h(x)=ex-(x>0),
∴h′(x)=ex+>0,
∴h(x)在定义域上是增函数,
∵h=-2<0,h(1)=e-1>0,
∴存在唯一x0∈,使h(x0)=0,
即-=0,=,-x0=ln x0,
当00;当x00,
即g′(x)<0;
当x>1时,h(x)>0,即g′(x)>0,
∴g(x)在区间(0,x0)上单调递增,在区间(x0,1)上单调递减,
在区间(1,+∞)上单调递增,
∴当x=x0时,g(x)取极大值g(x0)=ln x0-x+(x0-1)2
=-x+-2,
设F(x)=-x2+-2,易知F(x)在区间上单调递减.
∴g(x0)∴g(x)在(0,1)内无零点,∵g(1)=-<0,g(2)=e2-2+ln 2>0,
∴g(x)在(1,+∞)内有且只有一个零点,
综上所述,g(x)有且只有一个零点.
跟踪演练1 (1)解 设切点坐标为(x0,f(x0)),由f′(x)=-a,
得f′(x0)=-a,
所以切线方程为y-(ln x0-ax0+1)=(x-x0),
即y=x+ln x0.
因为直线y=2x与函数f(x)的图象相切,
所以解得a=-1.
(2)证明 当a=-1时,f(x)=ln x+x+1,
令F(x)=g(x)-f(x)+x2
=xex-ln x-x-1(x>0),
则F′(x)=(x+1)ex--1
=,
令G(x)=xex-1(x>0),
则G′(x)=(x+1)ex>0,
所以函数G(x)在区间(0,+∞)上单调递增,
又G(0)=-1<0,G(1)=e-1>0,
所以函数G(x)存在唯一的零点x0∈(0,1),
且当x∈(0,x0)时,G(x)<0,F′(x)<0;当x∈(x0,+∞)时,G(x)>0,F′(x)>0.
所以函数F(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
故F(x)min=F(x0)=x0-ln x0-x0-1,
由G(x0)=0得x0-1=0,
两边取对数得ln x0+x0=0,
故F(x0)=0,
所以g(x)-f(x)+x2≥0,
即f(x)≤g(x)+x2.
例2 (1)解 当a=e时,f(x)=ex+1-ln(x+1)-1,
f(0)=e-1.f′(x)=ex+1-,
f′(0)=e-1,
故曲线y=f(x)在点(0,f(0))处的切线方程为y-(e-1)=(e-1)x,即y=(e-1)x+e-1.
因为该切线在x,y轴上的截距分别为-1和e-1,
所以该切线与两坐标轴所围成的三角形的面积
S=×|-1|×(e-1)=.
(2)证明 当a>1时,
因为f(x)=aex-ln(x+1)-1,
所以f′(x)=aex-
=(x>-1),
令g(x)=aex(x+1)-1(x>-1),
则g′(x)=aex(x+2),
因为a>1,x>-1,所以g′(x)>0,
所以g(x)在(-1,+∞)上单调递增,
又g(-1)=-1<0,g(0)=a-1>0,
故g(x)在(-1,0)上有唯一的零点β,即g(β)=0,
因此有aeβ(β+1)=1.当x∈(-1,β)时,g(x)<0,即f′(x)<0;
当x∈(β,+∞)时,g(x)>0,
即f′(x)>0.
所以f(x)在(-1,β)上单调递减,在(β,+∞)上单调递增,故f(β)为最小值.由aeβ(β+1)=1,得-ln(β+1)=ln a+β,
所以当-1<β<0时,
f(β)=aeβ-ln(β+1)-1
=+β-1+ln a=ln a+,
因为a>1,所以ln a>0,
又因为-1<β<0,
所以>0,所以f(β)>0.
所以f(x)≥f(β)>0.
因此当a>1时,f(x)没有零点.
跟踪演练2 解 (1)函数f(x)=x-ln x-2的定义域是(0,+∞),f′(x)=1-,
当x∈(0,1)时,f′(x)<0,函数f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增,所以函数f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).
(2) x∈(1,+∞),xln x+x>k(x-1) k<,
令g(x)=,x>1,
求导得g′(x)

=,
由(1)知,f(x)=x-ln x-2在(1,+∞)上单调递增,f(3)=1-ln 3<0,f(4)=2(1-ln 2)>0,
因此存在唯一x0∈(3,4),
使得f(x0)=0,
即x0-ln x0-2=0 ln x0=x0-2,
当x∈(1,x0)时,f(x)<0,
即g′(x)<0,
当x∈(x0,+∞)时,f(x)>0,
即g′(x)>0,
因此函数g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
于是g(x)min=g(x0)===x0,
则k所以整数k的最大值是3.
培优点3 同构函数问题
例1 (1)BC [因为eysin x=exsin y,所以=,令g(t)=,0由g′(t)>0有t∈,
由g′(t)<0有t∈,所以g(t)=在上单调递增,在上单调递减,因为0因为0ex,由=有sin y>sin x,故D错误;
因为0所以cos x=>0,|cos y|=,
因为sin y>sin x,所以cos x>|cos y|,所以cos x+cos y>0,故C正确.]
(2)A [由题意知a>0,b>0,
∵4a=22a,8b=23b,3log27b=log3b,
∴22a+log3a=23b+log3b,
∴22a+log3a+log32=23b+log3b+log32,
即22a+log32a=23b+log32b,
∵y=log3x在(0,+∞)上单调递增,
∴log32b∴22a+log32a<23b+log33b.
设f(x)=2x+log3x,
则f(2a)∵y=2x与y=log3x在(0,+∞)上单调递增,
∴f(x)在(0,+∞)上单调递增,
∴2a<3b,即a<.]
跟踪演练1 (1)B (2)C
例2 解 (1)当a=1时,f(x)=ex-ln x,得f′(x)=ex-,
切点坐标为(1,e),斜率为f′(1)=e-1,
所求切线方程为y-e=(x-1),
即x-y+1=0.
(2)f(x)≥0,
即ex+x-ax-ln ax≥0(a>0,x>0)
ex+x≥ax+ln ax(a>0,x>0)
ex+x≥eln ax+ln ax(a>0,x>0).
令g(x)=ex+x,显然g(x)是增函数,
于是上式可化为g(x)≥g(ln ax),
即x≥ln ax(a>0,x>0)
ln a≤x-ln x(a>0,x>0).
令φ(x)=x-ln x(x>0),
则φ′(x)=1-=,
易知φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
故φ(x)min=φ(1)=1,于是ln a≤1,
可得0例3 (1)解 f(x)的定义域为(0,+∞),
f′(x)=1+ln x,
当x∈时,f′(x)<0,
当x∈时,f′(x)>0,
∴f(x)在上单调递减,
在上单调递增,
∴f(x)min=f =-.
(2)证明 ∵x>2,∴x-1>1,
要证ex>ln(x-1),
即证xex>(x-1)ln(x-1),
即证exln ex>(x-1)ln(x-1),
即证f(ex)>f(x-1),
由(1)知f(x)在上单调递增,
且ex>,x-1>,即证ex>x-1,
令φ(x)=ex-(x-1)(x>2),
φ′(x)=ex-1>0,φ(x)在(2,+∞)上单调递增,
∴φ(x)>φ(2)=e2-1>0,
∴ex>x-1,即证原不等式成立.
跟踪演练2 解 (1)当a=1时,
f(x)=xex-x,
所以f′(x)=(x+1)ex-1,
所以f′(1)=2e-1,f(1)=e-1,
所以切线方程为y-(e-1)
=(2e-1)(x-1),
即(2e-1)x-y-e=0.
(2)由题意得xex-ax≥ln x-x+1,
即xex-ln x+x-1≥ax,
因为x>0,所以≥a,
设F(x)=
=,
令t=x+ln x,易知t=x+ln x在(0,+∞)上单调递增,
当x→0时,t→-∞,
当x→+∞时,t→+∞,
所以存在x0,使t=x0+ln x0=0,
令m(t)=et-t-1,t∈R,
因为m′(t)=et-1,
所以当t∈(-∞,0)时,m′(t)<0,
即m(t)在(-∞,0)上单调递减;
当t∈(0,+∞)时,m′(t)>0,
即m(t)在(0,+∞)上单调递增,
所以m(t)min=m(0)=0,
所以m(t)≥m(0)=0,
即m(t)=et-t-1≥0,得到et≥t+1,当且仅当t=0时取等号,
所以F(x)=≥==2,
当且仅当x+ln x=0时取等号,所以a≤2,又a>0,
所以a的取值范围是(0,2].
培优点4 极值点偏移问题
例1 (1)解 因为f(x)=xe2-x,
所以f′(x)=(1-x)e2-x,
由f′(x)>0,解得x<1;
由f′(x)<0,解得x>1,
所以f(x)在(-∞,1)上单调递增,
在(1,+∞)上单调递减,
又f(1)=e,
所以f(x)在x=1处取得极大值e,无极小值.
(2)证明 由(1)可知,f(x)在(1,+∞)上单调递减,f(2)=2,
且a>1,b>1,a≠b,f(a)+f(b)=4,
不妨设1而b>2,2<4-a<3,且f(x)在(1,+∞)单调递减,
所以只需证f(b)>f(4-a),
即证4-f(a)>f(4-a),
即证f(a)+f(4-a)<4.
即证当1f(x)+f(4-x)<4,
令F(x)=f(x)+f(4-x),1则F′(x)=f′(x)-f′(4-x)
=(1-x)e2-x-ex-2(x-3),
令h(x)=(1-x)e2-x-ex-2(x-3),1则h′(x)=e2-x(x-2)-ex-2(x-2)
=(x-2)(e2-x-ex-2),
因为1所以x-2<0,e2-x-ex-2>0,
所以h′(x)<0,
即h(x)在(1,2)上单调递减,
则h(x)>h(2)=0,即F′(x)>0,
所以F(x)在(1,2)上单调递增,
所以F(x)即当1所以原命题成立.
跟踪演练1 (1)解 由题意知函数f(x)的定义域为(0,+∞).
由f′(x)=-+1
==,
可得函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以f(x)min=f(1)=e+1-a.
又f(x)≥0,
所以e+1-a≥0,解得a≤e+1,
所以a的取值范围为(-∞,e+1].
(2)证明 方法一 不妨设x1则由(1)知01.
令F(x)=f(x)-f ,
则F′(x)=+·
=(ex+x--1).
令g(x)=ex+x--1(x>0),
则g′(x)=ex+1-+·
=ex+1+(x>0),
所以当x∈(0,1)时,g′(x)>0,
所以当x∈(0,1)时,g(x)所以当x∈(0,1)时,F′(x)>0,
所以F(x)在(0,1)上单调递增,所以F(x)即在(0,1)上f(x)-f 又f(x1)=f(x2)=0,所以f(x2)-f <0,
即f(x2)由(1)可知,函数f(x)在(1,+∞)上单调递增,
所以x2<,即x1x2<1.
方法二 (同构法构造函数化解等式)
不妨设x1则由(1)知0由f(x1)=f(x2)=0,
得-ln x1+x1=-ln x2+x2,
即+x1-ln x1=+x2-ln x2.
因为函数y=ex+x在R上单调递增,
所以x1-ln x1=x2-ln x2成立.
构造函数h(x)=x-ln x(x>0),
g(x)=h(x)-h
=x--2ln x(x>0),
则g′(x)=1+-=≥0(x>0),
所以函数g(x)在(0,+∞)上单调递增,
所以当x>1时,g(x)>g(1)=0,
即当x>1时,h(x)>h,
所以h(x1)=h(x2)>h.
又h′(x)=1-=(x>0),
所以h(x)在(0,1)上单调递减,
所以0例2 证明 由题意知f(x)+2=ln x-ax+1=0,
于是
令=t,则由x2>2x1可得t>2.
于是t==
=,
即ln x1=-1.
从而ln x2=ln t+ln x1=-1.
另一方面,对x1x>两端分别取自然对数,
则有ln x1+2ln x2>5ln 2-3,
于是,即证+-3>5ln 2-3,
即>5ln 2,其中t>2.
设g(t)=,t>2.
则g′(t)=
=,
设φ(t)=-3ln t+2t--1,t>2.
则φ′(t)=-+2+==>0在(2,+∞)上恒成立,
于是φ(t)在(2,+∞)上单调递增,
从而φ(t)>φ(2)=-3ln 2+4--1=-3ln 2>0.
所以g′(t)>0,即函数g(t)在(2,+∞)上单调递增,于是g(t)>g(2)=5ln 2.
因此x1x>,即原不等式成立.
跟踪演练2 (1)解 f(x)的定义域为(0,+∞),f′(x)=-1=,
当a≤0时,f′(x)<0恒成立,
故f(x)在(0,+∞)上单调递减;
当a>0时,令f′(x)>0得x∈(0,a),
令f′(x)<0得x∈(a,+∞),
故f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.
综上,当a≤0时,f(x)在(0,+∞)上单调递减;
当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.
(2)证明 由(1)可知,要想f(x)有两个相异的零点x1,x2,则a>0,
因为f(x1)=f(x2)=0,
所以aln x1-x1=0,aln x2-x2=0,
所以x1-x2=a(ln x1-ln x2),
要证x1x2>e2,即证ln x1+ln x2>2,
等价于+>2,
而=,
所以等价于证明
>,
即ln>,
令t=,则t>1,
于是等价于证明ln t>成立,
设g(t)=ln t-,t>1,
g′(t)=-=>0,
所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即ln t>成立,
所以x1x2>e2,结论得证.培优点4 极值点偏移问题
极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图象不具有对称性,极值点偏移问题常常出现在高考数学的压轴题中,这类题往往对思维要求较高,过程较为烦琐,计算量较大,解决极值点偏移问题,有对称化构造函数法和比值代换法,二者各有千秋,独具特色.
考点一 对称化构造函数
例1 (2023·唐山模拟)已知函数f(x)=xe2-x.
(1)求f(x)的极值;
(2)若a>1,b>1,a≠b,f(a)+f(b)=4,证明:a+b<4.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 对称化构造函数法构造辅助函数
(1)对结论x1+x2>2x0型,构造函数F(x)=f(x)-f(2x0-x).
(2)对结论x1x2>x型,方法一是构造函数F(x)=f(x)-f ,通过研究F(x)的单调性获得不等式;方法二是两边取对数,转化成ln x1+ln x2>2ln x0,再把ln x1,ln x2看成两变量即可.
跟踪演练1 (2022·全国甲卷)已知函数f(x)=-ln x+x-a.
(1)若f(x)≥0,求a的取值范围;
(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点二 比值代换
例2 (2023·沧州模拟)已知函数f(x)=ln x-ax-1(a∈R).若方程f(x)+2=0有两个实根x1,x2,且x2>2x1,求证:x1x>.(参考数据:ln 2≈0.693,ln 3≈1.099)
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 比值代换法是指通过代数变形将所证的双变量不等式通过代换t=化为单变量的函数不等式,利用函数单调性证明.
跟踪演练2 (2023·淮北模拟)已知a是实数,函数f(x)=aln x-x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个相异的零点x1,x2且x1>x2>0,求证:x1x2>e2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________培优点3 同构函数问题
同构函数问题,是近几年高考的热点问题,考查数学素养和创新思维.同构函数问题是指在不等式、方程、函数中,通过等价变形形成相同形式,再构造函数,利用函数的性质解决问题,常见的同构有双变量同构和指对同构,一般都是压轴题,难度较大.
考点一 双变量同构问题
例1 (1)(多选)已知0A.y< B.x<
C.cos x+cos y>0 D.sin x>sin y
(2)(2023·大连模拟)若实数a,b满足4a+log3a=8b+3log27b,则(  )
A.a< B.a>
C.a>b3 D.a规律方法 含有地位相等的两个变量的不等式(方程),关键在于对不等式(方程)两边变形或先放缩再变形,使不等式(方程)两边具有结构的一致性,再构造函数,利用函数的性质解决问题.
跟踪演练1 (1)若对于0A. B.1
C.e D.2e
(2)(2023·德阳模拟)已知实数x,y满足eyln x=yex,y>1,则x,y的大小关系为(  )
A.y≥x B.yC.y>x D.y≤x
考点二 指对同构问题
考向1 指对同构与恒成立问题
例2 已知函数f(x)=ex+(1-a)x-ln ax(a>0).
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对于任意的x>0,有f(x)≥0,求正数a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考向2 指对同构与证明不等式
例3 已知函数f(x)=xln x.
(1)求f(x)的最小值;
(2)当x>2时,证明:ex>ln(x-1).
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 指对同构的常用形式
(1)积型:aea≤bln b,一般有三种同构方式:
①同左构造形式:aea≤ln beln b,构造函数f(x)=xex;
②同右构造形式:ealn ea≤bln b,构造函数f(x)=xln x;
③取对构造形式:a+ln a≤ln b+ln(b>1),构造函数f(x)=x+ln x.
(2)商型:≤,一般有三种同构方式:
①同左构造形式:≤,构造函数f(x)=;
②同右构造形式:≤,构造函数f(x)=;
③取对构造形式:a-ln a≤ln b-ln(b>1),构造函数f(x)=x-ln x.
(3)和、差型:ea±a>b±ln b,一般有两种同构方式:
①同左构造形式:ea±a>eln b±ln b,构造函数f(x)=ex±x;
②同右构造形式:ea±ln ea>b±ln b,构造函数f(x)=x±ln x.
跟踪演练2 已知a>0,函数f(x)=xex-ax.
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)若f(x)≥ln x-x+1恒成立,求实数a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
同课章节目录