第1单元练习卷(单元测试)小学数学六年级下册 北师大 (基础篇)(含答案)

文档属性

名称 第1单元练习卷(单元测试)小学数学六年级下册 北师大 (基础篇)(含答案)
格式 Doc
文件大小 241.5KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2024-01-17 20:29:08

图片预览

文档简介

(基础篇)2023~2024学年下学期小学数学北师大新版六年级第1单元练习卷
一.选择题(共7小题)
1.下列现象(  )是旋转现象。
A.滑滑梯 B.拧水龙头 C.拉动抽屉
2.下列各图中不能通过旋转得到的是(  )
A. B. C.
3.在杭州亚运会跳水比赛中,某运动员做了一个“向后翻转两周半”的屈体动作,这名运动员一共转了(  )
A.270° B.360° C.900° D.540°
4.体育课上,小民顺时针旋转180°,他听到口令是(  )
A.立正,向左转 B.立正,向右转
C.立正,向后转 D.立正,稍息
5.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是(  )立方分米。
A.144 B.24 C.72
6.三个同样大小的圆柱拼成一个高为60厘米的大圆柱时,表面积减少了40平方厘米,原来每个小圆柱的体积是(  )立方厘米。
A.200 B.400 C.600 D.800
7.如图图形中,可以用“底面积×高”来计算体积的有几个?(  )
A.3 B.4 C.5
二.填空题(共7小题)
8.圆柱有    条高,圆锥有    条高。
9.学校伸缩门的运动是    现象;电风扇叶轮的运动是    现象。
10.圆锥的底面半径扩大到原来的3倍,高不变,体积扩大到原来的    倍。
11.一个圆柱的底面半径是3厘米,高是4厘米,它的表面积是    平方厘米,体积是    立方厘米.
12.指针从“12”绕点O沿顺时针方向旋转到“2”,旋转了    °;指针从“2”绕点O沿顺时针方向旋转30°到“   ”。
13.把一个圆柱形木料削成一个等底、等高的圆锥,削去部分的体积是2.4dm3。这根圆柱形木料的体积是    dm3,削成的圆锥的体积是    dm3。
14.有一种饮料的瓶身如图所示,容积是10升,现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.那么瓶内现有饮料   升.
三.判断题(共5小题)
15.钟面上时针的转动是旋转。    
16.一个圆锥从顶点沿高切开,截面是扇形。    
17.从12:00到3:00,时针沿顺时针方向旋转了90°。    
18.圆锥的体积比与它等底等高的圆柱体积小.    
19.一个圆柱形容器中盛满30升水,倒入一个和它等底等高的圆锥形钢材,容器中还剩10升水。    
四.计算题(共1小题)
20.按要求计算。(单位:dm)
(1)计算圆锥的体积。
(2)根据展开图计算圆柱的表面积。
五.应用题(共4小题)
21.把一个底面周长是25.12厘米,高是125厘米的圆柱形钢材铸造成横截面是边长5厘米的正方形的长方体钢材,能铸造多长?
22.一个圆柱形容器的底面直径是8分米,高6分米,里面盛满水。把水倒在长为8分米,宽为4分米的长方体容器内,水深多少分米?
23.一个底面直径是10厘米,高是8厘米的圆柱形杯子里装满果汁,现把它倒入圆锥形高脚杯中(如图),最多可以倒满几杯?(杯子的厚度忽略不计)
24.学校有一个圆柱形的水池,从里面量直径是6米,深是1.5米。
(1)如果在水池内壁和底面抹上水泥,抹水泥工人费为每平方米30元,一共需要人工费多少元?
(2)学校要往水池注入1米深的水用来养鱼,求注入的水的体积。
(基础篇)2023~2024学年下学期小学数学北师大新版六年级第1单元练习卷
参考答案与试题解析
一.选择题(共7小题)
1.下列现象(  )是旋转现象。
A.滑滑梯 B.拧水龙头 C.拉动抽屉
【解答】解:A.滑滑梯是平移现象;
B.拧水龙头是旋转现象;
C.拉动抽屉是平移现象;
故选:B。
2.下列各图中不能通过旋转得到的是(  )
A. B. C.
【解答】解:不能通过旋转得到。
故选:B。
3.在杭州亚运会跳水比赛中,某运动员做了一个“向后翻转两周半”的屈体动作,这名运动员一共转了(  )
A.270° B.360° C.900° D.540°
【解答】解:2×360°+360°÷2
=720°+180°
=900°
因此这名运动员一共转了900°。
故选:C。
4.体育课上,小民顺时针旋转180°,他听到口令是(  )
A.立正,向左转 B.立正,向右转
C.立正,向后转 D.立正,稍息
【解答】解:体育课上,小民顺时针旋转180°,他听到口令是“立正,向后转”。
故选:C。
5.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是(  )立方分米。
A.144 B.24 C.72
【解答】解:48÷(3﹣1)×3
=24×3
=72(立方分米)
答:圆柱的体积是72立方分米。
故选:C。
6.三个同样大小的圆柱拼成一个高为60厘米的大圆柱时,表面积减少了40平方厘米,原来每个小圆柱的体积是(  )立方厘米。
A.200 B.400 C.600 D.800
【解答】解:根据题干分析可得:
每个小圆柱的高是60÷3=20(厘米)
圆柱的底面积为:40÷4=10(平方厘米)
所以每个小圆柱的体积是:20×10=200(立方厘米)
答:原来每个小圆柱的体积是200立方厘米。
故选:A。
7.如图图形中,可以用“底面积×高”来计算体积的有几个?(  )
A.3 B.4 C.5
【解答】解:图1、图2、图3和图4都可以用“底面积×高”来计算体积。
故选:B。
二.填空题(共7小题)
8.圆柱有  无数 条高,圆锥有  1 条高。
【解答】解:如图:
圆柱有无数条高,圆锥有1条高。
故答案为:无数,1。
9.学校伸缩门的运动是  平移 现象;电风扇叶轮的运动是  旋转 现象。
【解答】解:学校伸缩门的运动是平移现象;电风扇叶轮的运动是旋转现象。
故答案为:平移,旋转。
10.圆锥的底面半径扩大到原来的3倍,高不变,体积扩大到原来的  9 倍。
【解答】解:3×3=9
答:圆锥的体积扩大到原来的9倍。
故答案为:9。
11.一个圆柱的底面半径是3厘米,高是4厘米,它的表面积是  131.88 平方厘米,体积是  113.04 立方厘米.
【解答】解:圆柱的表面积:3.14×32×2+2×3.14×3×4
=3.14×18+75.36
=56.52+75.36
=131.88(平方厘米);
圆柱的体积:3.14×32×4
=3.14×36
=113.04(立方厘米);
答:这个圆柱的表面积是131.88平方厘米,体积是113.04立方厘米.
故答案为:131.88,113.04.
12.指针从“12”绕点O沿顺时针方向旋转到“2”,旋转了  60 °;指针从“2”绕点O沿顺时针方向旋转30°到“ 3 ”。
【解答】解:2×30°=60°
1×30°=30°
2+1=3
因此指针从“12”绕点O沿顺时针方向旋转到“2”,旋转了 60°;指针从“2”绕点O沿顺时针方向旋转30°到“3”。
故答案为:60,3。
13.把一个圆柱形木料削成一个等底、等高的圆锥,削去部分的体积是2.4dm3。这根圆柱形木料的体积是  3.6 dm3,削成的圆锥的体积是  1.2 dm3。
【解答】解:圆锥的体积是:2.4÷2=1.2(dm3)
圆柱的体积是:1.2×3=3.6(dm3)
答:这根圆柱形木料的体积是3.6dm3,削成的圆锥的体积是1.2dm3。
故答案为:3.6;1.2。
14.有一种饮料的瓶身如图所示,容积是10升,现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.那么瓶内现有饮料 8 升.
【解答】解:10÷(20+5)×20
=10÷25×20
=8(升)
答:瓶内现有饮料8升.
故答案为:8.
三.判断题(共5小题)
15.钟面上时针的转动是旋转。  √ 
【解答】解:钟面上时针的转动是旋转。所以原题说法正确。
故答案为:√。
16.一个圆锥从顶点沿高切开,截面是扇形。  × 
【解答】解:从圆锥的顶点向底面作垂直切割,得到的是一个以底面直径为底,以圆锥的高为高,以侧面母线为腰的三角形,因为圆锥的母线相等,所以得到的三角形是等腰三角形,所以原题说法错误。
故答案为:×。
17.从12:00到3:00,时针沿顺时针方向旋转了90°。  √ 
【解答】解:3×30°=90°
答:从12:00到3:00,时针沿顺时针方向旋转了90°。所以原题说法正确。
故答案为:√。
18.圆锥的体积比与它等底等高的圆柱体积小.  √ 
【解答】解:由题意知,圆锥的体积是等底等高圆柱的体积的,所以:
V柱﹣V锥
=V柱﹣V柱
=V柱
所以圆锥的体积比与它等底等高的圆柱体积小是正确的.
故答案为:√.
19.一个圆柱形容器中盛满30升水,倒入一个和它等底等高的圆锥形钢材,容器中还剩10升水。  × 
【解答】解:30﹣30×
=30﹣10
=20(升)
所以容器中还剩20升水。
因此题干中的结论是错误的。
故答案为:×。
四.计算题(共1小题)
20.按要求计算。(单位:dm)
(1)计算圆锥的体积。
(2)根据展开图计算圆柱的表面积。
【解答】解:(1)6÷2=3(分米)
3.14×3×3×10÷3
=28.26×10÷3
=94.2(立方分米)
答:这个圆锥的体积是94.2立方分米。
(2)3.14×3×3×2+18.84×5
=56.52+94.2
=150.72(平方分米)
答:这个圆柱的表面积是150.72平方分米。
五.应用题(共4小题)
21.把一个底面周长是25.12厘米,高是125厘米的圆柱形钢材铸造成横截面是边长5厘米的正方形的长方体钢材,能铸造多长?
【解答】解:底面半径:25.12÷3.14÷2=4(厘米);
圆柱体积:3.14×4×4×125
=6.28×1000
=6280(立方厘米)
6280÷(5×5)
=6280÷25
=251.2(厘米)
答:能铸造251.2厘米长。
22.一个圆柱形容器的底面直径是8分米,高6分米,里面盛满水。把水倒在长为8分米,宽为4分米的长方体容器内,水深多少分米?
【解答】解:3.14×(8÷2)2×6÷(8×4)
=3.14×16×6÷32
=50.24×6÷32
=301.44÷32
=9.42(分米)
答:水深9.42分米。
23.一个底面直径是10厘米,高是8厘米的圆柱形杯子里装满果汁,现把它倒入圆锥形高脚杯中(如图),最多可以倒满几杯?(杯子的厚度忽略不计)
【解答】解:8÷2=4(厘米)
10÷2=5(厘米)
3.14×52×8÷(3.14×42×6÷3)
=628÷100.48
=6.25(杯)
6.25杯≈6杯
答:最多可以倒满6杯。
24.学校有一个圆柱形的水池,从里面量直径是6米,深是1.5米。
(1)如果在水池内壁和底面抹上水泥,抹水泥工人费为每平方米30元,一共需要人工费多少元?
(2)学校要往水池注入1米深的水用来养鱼,求注入的水的体积。
【解答】解:(1)3.14×(6÷2)2+3.14×6×1.5
=3.14×9+28.26
=28.26+28.26
=56.52(平方米)
56.52×30=1695.6(元)
答:一共需要人工费1695.6元。
(2)3.14×(6÷2)2×1
=28.26×1
=28.26(立方米)
答:需要注水28.26立方米。