二元一次方程组的应用
【学习目标】
1、能将实际问题转化成数学问题,列出方程组解决相应问题。
2、通过巩固练习,培养学生分析问题和解决问题的综合能力。
【学习重点】
会找等量关系,列出方程组解决相应问题。
【学习过程】
一、自主学习
列方程解应用题的基本关系量
行程问题:速度×时间=路程 顺水速度=静水速度—水流速度 逆水速度=静水速度—水流速度
工程问题:工作效率×工作时间=工作量
浓度问题:溶液×浓度=溶质
银行利率问题:免税利息=本金×利率×时间
列方程组解应用题的常见题型
和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量
产品配套问题:加工总量成比例
速度问题:速度×时间=路程
航速问题:此类问题分为水中航速和风中航速两类
顺流(风):航速=静水(无风)中的速度+水(风)速
逆流(风):航速=静水(无风)中的速度--水(风)速
工程问题:工作量=工作效率×工作时间
分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题
增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量
浓度问题:溶液×浓度=溶质
银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率
利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%
盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量
数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示
几何问题:必须掌握几何图形的性质、周长、面积等计算公式
年龄问题:抓住人与人的岁数是同时增长的
【预习自测】
(行程问题)甲、乙二人相距6km,二人同 ( http: / / www.21cnjy.com )向而行,甲3小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少? 解:设甲每小时走x千米,乙每小时走y千米
题中的两个相等关系:
1、同向而行:甲的路程=乙的路程+
可列方程为:
2、相向而行:甲的路程+ =
可列方程为:
(倍数问题)某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?
解:这个市现在的城镇人口有x万人,农村人口有y万人
题中的两个相等关系:
1、现在城镇人口+ =现在全市总人口
可列方程为:
2、明年增加后的城镇人口+ =明年全市总人口
可列方程为:(1+0.8%)x+ =
(分配问题)某幼儿园分萍果,若每人3个,则 ( http: / / www.21cnjy.com )剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友? 解:设幼儿园有x个小朋友,萍果有y个
题中的两个相等关系:1、萍果总数=每人分3个+
可列方程为:
2、萍果总数=
可列方程为:
(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?
解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。 题中的两个相等关系 :
1、含盐10%的盐水中盐的重量+含盐85%的盐水中盐的重量=
可列方程为:10%x+ =
2、含盐10%的盐水重量+含盐85%的盐水重量=
可列方程为:x+y=
二、合作交流
1、在用二元一次方程组解决实际问题时,你会怎样设定未知数,可借助哪些方式辅助分析问题中的相等关系?
2、小组讨论,试用框图概括“用二元一次方程组分析和解决实际问题”的基本过程.
( http: / / www.21cnjy.com )
3、以小组为单位,分析15页例题,并交流课本随堂练习内容
三、达标测评
【必做题】
课本16页习题7.5
【选做题】
1、如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?
设问1.如何设未知数?
销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨.
设问2.如何确定题中数量关系?
列表分析
产品x吨 原料y吨 合计
公路运费(元)
铁路运费(元)
价值(元)
由上表可列方程组
解这个方程组,得
毛利润=销售款-原料费-运输费
因此,这批产品的销售款比原料费与运输费的和多________________元.
【提高题】
2、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?
四、课后作业
【必做题】基础训练基础园
【选做题】基础训练缤纷园、智慧园
【自助餐】
1、某书城开展学生优惠活动,凡一次性购书不超过200元的一律九折优惠,超过200元的其中200元按九折算,超过的部分按八折算。某学生一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。则该学生第二次购书实际付款_________________________元。
2、某原料供应商对购买其原料的顾客实行 ( http: / / www.21cnjy.com )如下优惠办法:(1)一次购买金额不超过1万元的不予优惠;(2)一次购买金额超过1万元,但不超过3万元的九折优惠;(3)一次购买金额超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠。某厂因库存原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元。如果他是一次性购买同样的原料,可少付款( )
A、1460元 B、1540元 C、1560元 D、2000元
3、某公园的门票价格如下表所示:
购票人数 1人~50人 51~100人 100人以上
票价 10元/人 8元/人 5元/人
某校八年级甲、乙两个班共100多人去该公园举行游园联欢活动,其中甲班有50多人,乙班不足50人。如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。问:甲、乙两个班分别有多少人?
4、甲运输公司决定分别运给A市苹果 ( http: / / www.21cnjy.com )10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?
3、为满足市民对优质教育的需求,某 ( http: / / www.21cnjy.com )中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.
(1)求:原计划拆、建面积各是多少平方米?
(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?
五、课后反思