6.4三角形的中位线定理
一、教学目标设计:
运用多媒体辅助教学技术创设良好的学习环境,激发学生的学生积极性,向学生提供充分从事数学活动的机会,引导学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想方法,逐步提高自主建构的能力,培养勇于探索的精神,切实提高课堂效率
1、认知目标
(1)知道三角形中位线的概念,明确三角形中位线与中线的不同。
(2)理解三角形中位线定理,并能运用它进行有关的论证和计算。
(3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
2、能力目标
引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生观察问题、分析问题和解决问题的能力。
3、德育目标
对学生进行事物之间相互转化的辩证的观点的教育。
4、情感目标
利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。
二、本课内容的重点、难点分析:
本节课的内容是三角形中位线定理及其应用,这堂课启到了承上启下的作用
【重点】:三角形中位线定理
【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
三、学情分析:
初二学生已初步具备一定的分析思维能力,但还远未达到成熟阶段。因而新授时可在教师适当的引导之下,借助一些现代化教育辅助手段,调动学生思维的积极性,激发学生内在的思维潜力,从而做到教与学的充分和谐。
四、教学准备:
【策略】
课堂组织策略:组织学生复习旧知识,联系实际,创设问题情景,逐层展开,传授新知识,并精心设计例题、练习、达到巩固知识的目的。
学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下,通过观察、归纳、抽象、概括等手段,获取知识。
辅助策略:借助“Powerpoint”平台,向学生展示动感几何,化抽象为形象,帮助学生解决学习过程中所遇难题,提高学习效率。
【教法学法】
本节课以“问题情境——建立模型——巩固训练——拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。
教给学生良好的学习方法比直接教给学生知识更重要。数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情景,引导学生自己积极思考探索,经历“观察、发现、归纳”的过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体。
【主要创意思路】:
1、用实例引入新课,培养学生应用数学的意识;
2、鼓励学生大胆猜想,用观察、测量等方法来突破重点、化解难点;
3、以学生为主体,应用启发式教学,调动学生的积极性;
4、利用变式练习和开放型练习代替传统练习,启迪学生的思维、开阔学生视野;
5、通过多媒体教学,揭示几何知识间的内在联系及概念本质属性。
五、教学过程
(一)联想,提出问题.
1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?
操作:(1)剪一个三角形,记为△ABC
(2)分别取AB,AC中点D,E,连接DE
(3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD
2、思考:四边形ABCD是平行四边形吗?
3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢?启发学生逆向类比猜想:DE∥BC,DE=BC.
由此引出课题.
(二)引入三角形中位线的定义和性质
1、定义三角形的中位线,强调它与三角形的中线的区别.
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半
(三)应用举例
1、A、B两点被池塘隔开,如何才能知道它们之间的距离呢?
在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么?
2、已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为 cm,面积为 cm2,为原三角形面积的 。
3、已知:△ABC三边长分别为a,b,c,它的三条中位线组成△DEF,△DEF的三条中位线又组成△HPN,则△HPN的周长等于 ,为△ABC周长的 , 面积为△ABC面积的 ,
4、如图,AF=FD=DB,FG∥DE∥BC,PE=1.5,则DP= ,BC= .
例题,如图.
1、顺次连结四边形四条边的中点,所得的四边形有什么特点?
学生容易发现:四边形ABCD是平行四边形
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图.求证:四边形EFGH是平行四边形.
分析:
已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
2、让学生画图观察并思考此题的特殊情况,如图,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
3、练习:
①次连结平行四边形四边中点所得的四边形是_________.
②顺次连结等腰梯形四边中点所得的四边形是 .
③顺次连结矩形四边中点所得的四边形是 .
④顺次连结菱形四边中点所得的四边形是 .
⑤顺次连结正方形四边中点所得的四边形是 .
(四)师生共同小结
1、教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2、在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基本图形(如图).
(1)注意三角形中线与中位线的区别,图(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图(b)(c).
(3)证明线段倍分关系的方法常有三种,图(b),(d),(e).
3、添辅助线构造基本图形来使用性质的解题方法.
4、三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节课作思维上的准备)
(五)作业布置
顺次连接什么样的四边形各边中点连线得到的四边形是矩形?菱形?正方形?
六、教学反思
1、本教学过程设计需1课时完成.
2、本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦6.4 三角形的中位线定理
【教案背景】
1、面向学生:中学
2、课时:1
3、学科:数学
4、学生准备:提前预习本节课的内容,若干张三角形纸板,彩色油性笔,剪刀.
【教材分析】
1、教材的地位和作用:
三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习等腰三角形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。
2、教学目标
(一)知识目标
(1)理解三角形中位线的概念
(2)会证明三角形的中位线定理
(3)能应用三角形中位线定理解决相关的问题;
(二)过程与方法目标
进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。
(三)情感目标
通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。
3、重点与难点
重点:理解并应用三角形中位线定理。
难点:三角形中位线定理的证明和运用。
【教学方法】
学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学,我始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、
比较、分析和总结,使学生充分地参与教学全过程。
【教学过程】
本节课分为五个环节:设景激趣,引入新课 概念学习,感悟新知 拼图活动,探索定理 巩固练习,强化新知 小结归纳,作业布置
(一)设景激趣,导入新课
为了测量广场上的小假山外围圆形的宽(不能直接测量) 在平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出宽BC。你知道这是为什么吗?
设计意图:
问题是一切学习探究的先父,教材中创设的问题情境难度较大,学生不容易突破。这里创设了一个现实情景,在这里教师不急于让学生找出答案,而是让学生带着问题去学习。为了让学生主动的获得新知,先让学生动手做以下一个环节的动手操作活动。
概念学习(引导探究,获得新知)
1、动手实践探索
请您做一做(让学生拿出自己预先准备好的三角形纸板):
1、找出三边的中点
2、连接6点中的任意两点
3、找找哪些线是你已经学过的,哪些是未曾学过的
设计意图:
在本环节,让学生经过动手操作,学生会发现有3条是已经学过的中线,有3条是没有学过的。最终给出三角形中位线的定义。也引出了本节课的课题:三角形的中位线。这样做,既让学生得出三角形中位线的概念又让学生在无形中区分了三角形的中线和三角形中位线
2、三角形中位线的定义:
连接三角形两边中点的线段,叫做三角形的中位线.
如图,DE、EF、DF是三角形的3条中位线。
跟踪训练:
① 如果D、E分别为AB、AC的中点,那么DE为△ABC的 ;
② 如果DE为△ABC的中位线,那么 D、E分别为AB、AC的 。
设计意图:
学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。
(三)拼图活动、探索定理(用时大概5分钟)
整个的拼图游戏我设计了以下两个问题:
问题一:将一张三角形纸片沿着中位线DE剪成两部分,得到△ADE和四边形BCED.将△ADE按照下图方式放置,使点A与C重合,AE与CE重合,你拼出了一个什么图形?说明你的理由.
问题二:猜想得出平行四边形后,简述证明过程。
设计意图:
这个时候学生会拿出自己已经准备好的三角形纸板进行反复剪拼,并交流。这样处理教材是为了分散难点,中位线定理证明对于学生来说有一定的难度,主要是为后面猜想三角形中位线定理并证明定理而作下铺垫的,这里体现了新的知识是建立在学生已有认识的基础上。也更大的激发学生动手实践探索的主动性。
简述证明过程
已知:如图,DE是△ABC的中位线,求证:四边形DBCF是平行四边形
证明:如图,∵ △ADE≌△CFE
∴AD=CF,∠ADE=∠F
∴BD∥CF
∵AD=BD
∴BD=CF
∴四边形BCFD是平行四边形
建议处理办法:
充分交流之后让小组同学上来展示自己的剪拼法,并简述自己的理由
乘胜追击,猜想得出定理
DE是△ABC的中位线,请想一想:
①DE与BC有怎样的位置关系
② DE与BC有怎样的数量关系?
为什么?
设计意图:
(让学生去猜测,去说,去发现,主要还是让学生独立思考,说出自己的猜想)
这个时候也许有些学生会通过用尺子量,观察的直观办法得出定理,有些学生可能会通过全等三角形的性质,平行四边形的性质去理性得出定理的办法。这个时候教师要给予学生一个充分的交流和探索时间。学生通过合作学习,彼此互相启发,共同研究,能够自己解决这一问题。从而猜想得出三角形的中位线定理,并为定理的证明打下基础。引导得出定理如下:
三角形中位线定理:
三角形的中位线平行于第三边(位置关系),并且等于第三边的一半(数量关系)。
活动效果:
注意:引导学生去欣赏数学的简洁美,引导学生用简单的符号、图形语言去表达深刻的定理。
验证、明确结论
证法:延长DE至F,使EF=DE,连接CF
∵AE=CE,∠AED=∠CEF,
∴△ADE≌△CFE
∴AD=CF,∠ADE=∠F
∴BD∥CF
∵AD=BD
∴BD=CF
∴四边形BCFD是平行四边形
∴DF∥BC,DF=BC
∴DE∥BC,DE=BC
活动效果:
有了前面的交流活动,学生要证明三角形的中位线定理思路就清晰多了,只是这时候后怎样做辅助线又是学生学习的一个难点。这时候,不要生硬的将辅助线直接做出来让学生接受,而是采取启发的办法:要证明一条线段长度等于另一条线段的长的一半,可将较短的线段延长一倍,或者截取较长线段的一半等。有了前面开拓思路的交流,这个时候,让学生独立写出证明过程。温馨提示:这个时候学生可能有多种证明的方法,教师要对他们的证明方法给以充分的肯定和点拨,增加他们学习数学的信心
例1如图,点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.
解:连接AC.在△ABC中,
∵点E,F分别是边AB,BC的中点,
∴EF∥AC,EF=AC/2(三角形的中位线定理).
同理GH∥AC,GH=AC/2
∴EF∥GH,且EF=GH.
∴四边形EFGH是平行四边形(平行四边形的判定定理1).
(四)巩固练习,强化新知
1、(练习意图:学生能解答开头提出的疑问,弥合学习的心理“缺口”。在这里让学生体会数学来应用于生活的价值。)
2、指导应用,鼓励创新随堂练习
(1)已知三角形三边长分别为6,8,10,顺次连结各边中点所得的三角形周长是_______;如果△ABC的三边的长分别为a、b、c呢 _______
变式训练:
(2)三角形的三条中位线围成的三角形的周长为10cm,则原三角形的周长是_____________cm。
(亮点2:基于初学者的学,第一题简单而扣紧定理应用;第二题能进一步拓展学生应用能力,提醒学生中位线作为辅助线的作用)
设计意图:
这道题目主要是利用平行四边形有关定理,三角形的中位线定理来解,既再现了前面的知识,又巩固了新学的知识,让学生感受到知识的连贯性和共性,同时这道题至少有4种证明办法,提高学生的思维能力,达到思维拓展创新的效果。
变式训练:
1、四边形ABCD是平行四边形时,,四边形EFGH是什么特殊图形
2、四边形ABCD是矩形时,四边形EFGH是什么特殊图形
(五)小结归纳
1、本节课你学到了哪些概念定理?
2、你学会了这样做辅助线的办法?
3、你在和同学的交流学习过程中,有什么感受?
教学反思:
本节课采用“问题—探究—发现—应用”的启发性教学模式,把大部分时间交给了学生,让学生充分动脑、动手、动口进行探究性的学习。而教师不是一位旁观者,而是一位引导者、合作者,组织者。整节课教师注意提高学生的逻辑证明能力,强调直观与抽象结合,让学生又一次经历了数学的快乐之旅。
假山
B
A
C
D
E
A
C
B
F
E
D
C
B
A
F
E
D
C
B
E
D
A
B
C
D
E
F
A
C
D
B
F
E
A
C
D
B
F
E
B C
A
D
E
F
B
A
C
D
E