新教材2024高考化学二轮专题复习专题11化学工艺流程课件(共5份)

文档属性

名称 新教材2024高考化学二轮专题复习专题11化学工艺流程课件(共5份)
格式 zip
文件大小 40.2MB
资源类型 教案
版本资源 通用版
科目 化学
更新时间 2024-01-19 10:33:40

文档简介

(共75张PPT)
专题十一 化学工艺流程
真题研练·析考情
核心突破·提能力
模考精练·抓落实
真题研练·析考情
真 题 研 练
1.[2023·新课标卷]铬和钒具有广泛用途。铬钒渣中铬和钒以低价态含氧酸盐形式存在,主要杂质为铁、铝、硅、磷等的化合物,从铬钒渣中分离提取铬和钒的一种流程如下图所示:
已知:最高价铬酸根在酸性介质中以存在,在碱性介质中以存在。
回答下列问题:
(1)煅烧过程中,钒和铬被氧化为相应的最高价含氧酸盐,其中含铬化合物主要为________(填化学式)。
(2)水浸渣中主要有SiO2和________。
(3)“沉淀”步骤调pH到弱碱性,主要除去的杂质是________。
(4)“除硅磷”步骤中,使硅、磷分别以MgSiO3和MgNH4PO4的形式沉淀,该步需要控制溶液的pH≈9以达到最好的除杂效果,若pH<9时,会导致_______________________;
pH>9时,会导致____________________。
Na2CrO4
Fe2O3
Al(OH)3
不利于形成MgNH4PO4沉淀
不能形成MgSiO3沉淀
(5)“分离钒”步骤中,将溶液pH调到1.8左右得到V2O5沉淀,V2O5在pH<1时,溶解为或VO3+;在碱性条件下,溶解为或,上述性质说明V2O5具有________(填标号)。
A.酸性    B.碱性    C.两性
(6)“还原”步骤中加入焦亚硫酸钠(Na2S2O5)溶液,反应的离子方程式为__________________________________________。
C
+10H+===4Cr3++6S+5H2O
解析:由题给流程可知,铬钒渣在氢氧化钠和空气中煅烧,将钒、铬、铁、铝、硅、磷等元素转化为相应的最高价含氧酸盐。煅烧渣加入水浸取、过滤得到含有二氧化硅、氧化铁的滤渣和滤液;向滤液中加入稀硫酸调节溶液pH将转化为Al(OH)3沉淀,过滤得到Al(OH)3滤渣和滤液;向滤液中加入硫酸镁溶液、硫酸铵溶液将硅元素、磷元素转化为MgSiO3和MgNH4PO4沉淀,过滤得到含有MgSiO3、MgNH4PO4的滤渣和滤液;向滤液中加入稀硫酸调节溶液pH将钒元素转化为五氧化二钒,过滤得到五氧化二钒和滤液;向滤液中加入焦亚硫酸钠溶液将铬元素转化为三价铬离子,调节溶液pH将铬元素转化为氢氧化铬沉淀,过滤得到氢氧化铬。
(4)由分析可知,加入硫酸镁溶液、硫酸铵溶液的目的是将硅元素、磷元素转化为MgSiO3和MgNH4PO4沉淀,若溶液pH<9时,会导致磷元素不能形成MgNH4PO4沉淀,若溶液pH>9时,会导致镁离子生成氢氧化镁沉淀,不能形成MgSiO3沉淀,导致产品中混有杂质;(5)由题给信息可知,五氧化二钒是能与酸溶液反应生成盐和水,也能与碱溶液反应生成盐和水的两性氧化物,故选C;(6)由题意可知,还原步骤中加入焦亚硫酸钠溶液的目的是将铬元素转化为铬离子,反应的离子方程式为 +10H+===4Cr3++6S+5H2O。
2.[2023·湖南卷]超纯Ga(CH3)3是制备第三代半导体的支撑源材料之一。近年来,我国科技工作者开发了超纯纯化、超纯分析和超纯灌装一系列高新技术,在研制超纯Ga(CH3)3方面取得了显著成果。工业上以粗镓为原料,制备超纯的工艺流程如下:
已知:①金属Ga的化学性质和Al相似,Ga的熔点为29.8 ℃;
②Et2O(乙醚)和NR3(三正辛胺)在上述流程中可作为配体;
③相关物质的沸点:
物质 Ga(CH3)3 Et2O CH3I NR3
沸点/℃ 55.7 34.6 42.4 365.8
回答下列问题:
(1)晶体Ga(CH3)3的晶体类型是________;
(2)“电解精炼”装置如图所示,电解池温度控制在40~45 ℃的原因是_____________________________________________________,
阴极的电极反应式为________________________________________;
分子晶体
电解精炼温度需在镓的熔点以上
+2H2O+3e-===Ga+4OH-
(3)“合成Ga(CH3)3(Et2O)”工序中的产物还包括MgI2和CH3MgI,写出该反应的化学方程式_______________________________________;
(4)“残渣”经纯水处理,能产生可燃性气体,该气体主要成分是________;
(5)下列说法错误的是________;
A.流程中Et2O得到了循环利用
B.流程中,“合成Ga2Mg5”至“工序X”需在无水无氧的条件下进行
C.“工序X”的作用是解配Ga(CH3)3(NR3),并蒸出Ga(CH3)3
D.用核磁共振氢谱不能区分Ga(CH3)3和CH3I
Ga2Mg5+8CH3I+2Et2O===2Ga(CH3)3(Et2O)+3MgI2+2CH3MgI
CH4
D
(6)直接分解Ga(CH3)3(Et2O)不能制备超纯Ga(CH3)3,而本流程采用“配体交换”工艺制备超纯Ga(CH3)3的理由是_____________________________________________________
__________;
(7)比较分子中的C—Ga—C键角大小:Ga(CH3)3________ Ga(CH3)3(Et2O)(填“>”“<”或“=”),其原因?。
Ga(CH3)3和Et2O的沸点接近,而和NR3的沸点相差较大,解配后可以分离出Ga(CH3)3
>
Ga(CH3)3中Ga为sp2杂化,Ga(CH3)3(Et2O)中Ga为sp3杂化
解析:(1)晶体Ga(CH3)3的沸点较低,为分子晶体。(2)镓的熔点为29.8 ℃,电解精炼温度需高于镓的熔点,因此电解池温度控制在40~45 ℃。Ga和Al的性质相似,电解精炼过程中粗镓在阳极失电子产生的Ga3+在NaOH溶液中形成迁移到阴极,得电子被还原为Ga,故阴极反应为+2H2O+3e-===Ga+4OH-。(3)根据原子守恒,结合流程图中物质转化配平,得反应的化学方程式为Ga2Mg5+8CH3I+2Et2O===2Ga(CH3)3(Et2O)+3MgI2+2CH3MgI。(4)由(3)可知,残渣中含CH3MgI,结合元素守恒可知,其和水反应生成的可燃性气体为CH4。(5)由已知②、③,结合流程图可知,溶剂蒸发、配体交换时Et2O得以循环利用,A项正确;高纯Ga能与H2O、O2反应,CH3I、能与水反应,有机物能与O2反应,故B项正确;配体交换时NR3和Ga(CH3)3(Et2O)反应得到(NR3)和Et2O,则工序X为解配Ga(CH3)3(NR3),并利用和NR3的沸点相差较大蒸出,C项正确;和CH3I中均只有1种氢原子,核磁共振氢谱均只有一组吸收峰,但吸收强度不同,可以鉴别,D项错误。(7)Ga(CH3)3中Ga为sp2杂化(Et2O)中Ga为sp3杂化,因此C—Ga—C键角大小:Ga(CH3)3>Ga(CH3)3(Et2O)。
3.[2022·湖北卷]全球对锂资源的需求不断增长,“盐湖提锂”越来越受到重视。某兴趣小组取盐湖水进行浓缩和初步除杂后,得到浓缩卤水(含有Na+、Li+、Cl-和少量Mg2+、Ca2+),并设计了以下流程通过制备碳酸锂来提取锂。
25 ℃时相关物质的参数如下:LiOH的溶解度:12.4 g/100 gH2O
化合物 Mg(OH)2 Ca(OH)2 CaCO3 Li2CO3
Ksp 5.6×10-12 5.5×10-6 2.8×10-9 2.5×10-2
回答下列问题:
(1)“沉淀1”为________。
(2)向“滤液1”中加入适量固体Li2CO3的目的是
__________________________________________。
(3)为提高Li2CO3的析出量和纯度,“操作A”依次为________、________、洗涤。
Mg(OH)2
将Ca2+转化成CaCO3沉淀除去,同时不引入新杂质
蒸发浓缩
趁热过滤
(4)有同学建议用“侯氏制碱法”的原理制备Li2CO3。查阅资料后,发现文献对常温下的Li2CO3有不同的描述:①是白色固体;②尚未从溶液中分离出来。为探究LiHCO3的性质,将饱和LiCl溶液与饱和NaHCO3溶液等体积混合,起初无明显变化,随后溶液变浑浊并伴有气泡冒出,最终生成白色沉淀。上述现象说明,在该实验条件下LiHCO3________(填“稳定”或“不稳定”),有关反应的离子方程式为________________________________________________。
(5)他们结合(4)的探究结果,拟将原流程中向“滤液2”加入Na2CO3改为通入CO2。这一改动能否达到相同的效果,作出你的判断并给出理由?
不稳定
===LiHCO3,2LiHCO3===Li2CO3↓ + CO2↑+ H2O
能达到相同效果,因为改为通入过量的CO2,则LiOH转化为LiHCO3,结合(4)的探究结果,LiHCO3也会很快分解产生Li2CO3,所以这一改动能达到相同的效果
解析:(1)浓缩卤水中含有Mg2+,当加入石灰乳后,转化为Mg(OH)2沉淀,所以沉淀1为Mg(OH)2;(2)滤液1中含有Na+、Li+、Cl-和Ca2+,结合已知条件:LiOH的溶解度和化合物的溶度积常数,可推测,加入Li2CO3的目的是将Ca2+转化成CaCO3沉淀除去,同时不引入新杂质;(3)由Li2CO3的溶解度曲线可知,温度升高,Li2CO3的溶解度降低,即在温度高时,溶解度小,有利于析出,所以为提高Li2CO3的析出量和纯度,需要在较高温度下析出并过滤得到沉淀,即依次蒸发浓缩、趁热过滤、洗涤;(4)饱和LiCl和饱和NaHCO3等体积混合后,产生了LiHCO3和NaCl,随后LiHCO3不稳定,分解产生了CO2和Li2CO3,涉及方程式有: === LiHCO3,2LiHCO3=== Li2CO3↓ + CO2↑+ H2O;(5)“滤液2”中含有LiOH,加入Na2CO3,目的是将LiOH转化为Li2CO3。若改为通入过量的CO2,则LiOH转化为LiHCO3,结合(4)的探究结果,LiHCO3也会很快分解产生Li2CO3,所以这一改动能达到相同的效果。
4.[2022·广东卷]稀土(RE)包括镧、钇等元素,是高科技发展的关键支撑。我国南方特有的稀土矿可用离子交换法处理,一种从该类矿(含铁、铝等元素)中提取稀土的工艺如下:
已知:月桂酸(C11H23COOH)熔点为44℃;月桂酸和(C11H23COO)3RE均难溶于水。该工艺条件下,稀土离子保持+3价不变;(C11H23COO)2Mg的Ksp=1.8×10-8,Al(OH)3开始溶解时的pH为8.8;有关金属离子沉淀的相关pH见下表。
离子 SMg2+ Fe3+ Al3+ RE3+
开始沉淀时的pH 8.8 1.5 3.6 6.2~7.4
沉淀完全时的pH / 3.2 4.7 /
(1)“氧化调pH”中,化合价有变化的金属离子是________。
(2)“过滤1”前,用NaOH溶液调pH至____________的范围内,该过程中Al3+发生反应的离子方程式为_____________________________。
(3)“过滤2”后,滤饼中检测不到Mg元素,滤液2中Mg2+浓度为2.7 g·L-1。为尽可能多地提取RE3+,可提高月桂酸钠的加入量,但应确保“过滤2”前的溶液中c(C11H23COO-)低于________(保留两位有效数字)。
Fe2+
4.7≤pH<6.2
Al3++3OH-===Al(OH)3↓
4.0×10-4
(4)①“加热搅拌”有利于加快RE3+溶出、提高产率,其原因是_______________________。
②“操作X”的过程为:先________,再固液分离。
(5)该工艺中,可再生循环利用的物质有________(写化学式)。
(6)稀土元素钇(Y)可用于制备高活性的合金类催化剂Pt3Y。
①还原YCl3和PtCl4熔融盐制备Pt3Y时,生成1 mol Pt3Y转移________mol电子。
②Pt3Y/C用作氢氧燃料电池电极材料时,能在碱性溶液中高效催化O2的还原,发生的电极反应为________________________。
加热搅拌可加快反应速率
冷却结晶
MgSO4
15
O2+4e-+2H2O===4OH-
解析:(1)由题意知,“氧化调pH”中只有铁是变价金属,铝和稀土金属元素均为+3价,Fe2+被氧化为Fe3+。(2)“过滤1”所得“滤渣”为Fe(OH)3和Al(OH)3,应调节的pH范围为4.7≤pH<6.2,pH小于6.2是防止RE3+开始沉淀。该过程中Al3+与OH-反应生成Al(OH)3沉淀。(3)“滤液2”中Mg2+浓度为2.7 g·L-1,其物质的量浓度为0.112 5 mol·L-1,Ksp[(C11H23COO)2Mg]=c2(C11H23COO-)·c(Mg2+),c2(C11H23COO-)=(1.8×10-8/0.112 5) mol2·L-2=16×10-8 mol2·L-2,c(C11H23COO-)= mol·L-1=4.0×10-4mol·L-1,若c(C11H23COO-)大于4.0×10-4 mol·L-1,则形成的“滤饼”中会混入(C11H23COO)2Mg。(4)①“滤饼”的主要成分为(C11H23COO)3RE,为难溶物,搅拌可以增加其与盐酸的接触面积,加热也可以加快固体的溶解,进而加快反应速率。②加热搅拌的温度为55 ℃,而月桂酸的熔点为44 ℃,所以“操作X”(过滤)前,先要冷却结晶,使月桂酸变成固体。(5)“滤液2”中含有MgSO4,可以用作“浸取”时加入的“酸化MgSO4溶液”。(6)①YCl3中Y为+3价,PtCl4中Pt为+4价,Pt3Y为合金,Pt和Y均可以看成0价,若生成1 mol Pt3Y,转移电子的物质的量为(4×3+3×1) mol=15 mol。②在氢氧燃料电池的碱性介质中,O2得电子与水反应生成OH-。
考情分析
题型 考点 预测
以工艺流程图为载体的无机综合题 原料的预处理及实验条件的选择 化学工艺流程题一般是陌生复杂的情境,多以工业流程图的形式呈现,主要考查元素及其化合物性质、化学反应原理及基本实验操作,常会涉及定量计算。需要关注以下几个方面:(1)常见工业生产都会涉及除杂和分离等环节,特别常用的是通过调节溶液的pH达到除杂或分离的目的,注意元素化合物的转化和实验基本操作的结合,常涉及除杂及离子的检验等。(2)对于产品的提取问题(由溶液到固体主要经历蒸发浓缩、冷却结晶、过滤洗涤、干燥、保存等)这也是流程图题中的新变化。
物质成分的判断及循环利用 化学(离子)方程式的书写 分离、提纯的实验操作、成分检验 选用试剂、操作的目的或原因 电化学的简单考查 实验方案的设计及评价 转化率的分析判断 Ksp的计算及应用 物质含量的测定 核心突破·提能力
考点1 化工流程中原料预处理及反应条件的控制
核 心 梳 理
1.原料预处理的方法及目的
处理方法 目的
固体原料粉碎或研磨 减小颗粒直径增大反应物接触面积,增大浸取时的反应速率,提高浸取率
煅烧或灼烧 ①除去硫、碳单质;②有机物转化、除去有机物;③高温下原料与空气中氧气反应;④除去受热不稳定的杂质等
酸浸 ①溶解转变成可溶物进入溶液中,以达到与难溶物分离的目的;②去氧化物(膜)
碱溶 ①除去金属表面的油污;②溶解铝、氧化铝等
加热 ①加快反应速率或溶解速率;②促进平衡向吸热反应方向移动;③除杂,除去受热不稳定的杂质,如NaHCO3、Ca(HCO3)2、KMnO4、NH4Cl等物质;④使沸点相对较低或易升华的原料气化;⑤煮沸时促进溶液中的气体(如氧气)挥发逸出等
2.反应条件的控制及目的
条件控制 目的
反应物用 量或浓度 ①酸浸时提高酸的浓度可提高矿石中某金属元素的浸取率;②增大便宜、易得的反应物的浓度,可以提高其他物质的利用率,使反应充分进行;③增大物质浓度可以加快反应速率,使平衡发生移动等
降温 ①防止某物质在高温时溶解(或分解);②使化学平衡向着题目要求的方向(放热反应方向)移动;③使某个沸点较高的产物液化,使其与其他物质分离等;④降低某些晶体的溶解度,减少损失等
控温 ①结晶获得所需物质;②防止某种物质(如H2O2、草酸、浓硝酸、铵盐等)温度过高时会分解或挥发;③使某物质达到沸点挥发出来;④使催化剂的活性达到最好;⑤防止副反应的发生等
加入氧化剂 (或还原剂) ①转化为目标产物的价态;②除去杂质离子[如把Fe2+氧化成Fe3+,而后调溶液的pH,使其转化为Fe(OH)3沉淀除去]
加入沉淀剂 ①生成硫化物沉淀(如加入硫化钠、硫化铵、硫化亚铁等);②加入可溶性碳酸盐,生成碳酸盐沉淀;③加入氟化钠,除去Ca2+、Mg2+
pH控制 ①生成金属氢氧化物,以达到除去金属离子的目的;②抑制盐类水解;③促进盐类水解生成沉淀,有利于过滤分离
典 题 精 研
考向 原料预处理及反应条件的控制与选择
例1 Ce2(CO3)3可用于催化剂载体及功能材料的制备。天然独居石中,铈(Ce)主要以CePO4形式存在,还含有SiO2、Al2O3、Fe2O3、CaF2等物质。以独居石为原料制备Ce2·nH2O的工艺流程如下:
(1)为提高“水浸”效率,可采取的措施有
________________________(至少写两条);
(2)加入絮凝剂的目的是
________________________________________________;
解析:(1)为提高“水浸”效率,可采取搅拌、适当升高温度、研碎等措施。(2)Fe(OH)3和Al(OH)3是胶状沉淀,不能完全被过滤掉,故加入絮·凝剂强化沉降Fe(OH)3和Al(OH)3。
搅拌、适当升高温度(合理即可)
强化沉降和Al(OH)3
练1 钯催化剂(主要成分为Pd、α Al2O3,还含少量铁、铜等元素)在使用过程中,Pd易被氧化为难溶于酸的PdO而失活。一种从废钯催化剂中回收海绵钯的工艺流程如图。
(1)“还原ⅰ”加入甲酸的目的是还原________(填化学式)。
PdO
(2)“酸浸”过程:
①从绿色化学要求出发,酸浸液应选择________(填标号)。
A.王水(浓硝酸和浓盐酸按体积比1∶3混合)
B.盐酸和Cl2
C.盐酸和H2O2
②温度、固液比对浸取率的影响如图,则“酸浸”的最佳条件为____________________________________。
C
温度控制在75℃~80℃,固液比为4∶1
解析:(1)钯催化剂在使用过程中, Pd 易被氧化为难溶于酸的 PdO 而失活,“还原ⅰ”加入甲酸的目的是还原 PdO。(2)①王水有很强的氧化性和挥发性,且王水不稳定,容易分解得到氯气,氯气有毒,所以从绿色化学要求出发,酸浸液应选择盐酸和H2O2,故选C。②从图中可以看出,当温度在75℃~80℃时,浸取率最大,能达到98%~99%,固液比为4∶1时,浸取率也最大,能达到98%,故“酸浸”的最佳条件为温度控制在75℃~80℃,固液比为4∶1。
考点2 化工流程中物质的分离与提纯
核 心 梳 理
1.化工生产过程中分离、提纯、除杂
化工生产过程中分离、提纯、除杂等环节,与高中化学基本实验的操作紧密联系,包括蒸发浓缩、冷却结晶、过滤、洗涤、干燥、蒸馏、萃取、分液等基本实验操作及原理,并要熟悉所用到的相关仪器。
2.常考分离、提纯的方法及操作
(1)从溶液中获取晶体的方法及实验操作
①溶解度受温度影响较小的(如NaCl)采取蒸发结晶的方法,实验过程为:蒸发浓缩、趁热过滤(如果温度下降,杂质也会以晶体的形式析出来)、洗涤、干燥。
②溶解度受温度影响较大、带有结晶水的盐或可水解的盐,采取冷却结晶的方法,实验过程为:蒸发浓缩(至少有晶膜出现)、冷却结晶、过滤、洗涤(冰水洗、热水洗、乙醇洗等)、干燥。
(2)固体物质的洗涤
洗涤试剂 适用范围 目的
蒸馏水 冷水 产物不溶于水 除去固体表面吸附着的可溶性粒子,可适当降低固体因为溶解而造成的损失
热水 有特殊的物质其溶解度随着温度升高而下降 除去固体表面吸附着的可溶性粒子,可适当降低固体因为温度变化溶解而造成的损失
有机溶剂(酒精、丙酮等) 固体易溶于水、难溶于有机溶剂 减少固体溶解;利用有机溶剂的挥发性除去固体表面的水分,产品易干燥
饱和溶液 对纯度要求不高的产品 减少固体溶解
酸、碱溶液 产物不溶于酸、碱 除去固体表面吸附着的可溶于酸、碱的杂质;减少固体溶解
洗涤沉淀的方法:向过滤器中加入蒸馏水至浸没沉淀,待水自然流下后,重复操作2~3次 检验沉淀是否洗涤干净的方法:取少量最后一次的洗涤液于试管中,向其中滴入××试剂,若未出现特征反应现象,则沉淀洗涤干净 (3)减压蒸发的原因:减压蒸发降低了蒸发温度,可以防止某物质分解(如H 2O2、浓硝酸、NH4HCO3)或失去结晶水(如题目要求制备结晶水合物产品)。
(4)萃取与反萃取
①萃取:利用物质在两种互不相溶的溶剂中的溶解度不同,将物质从一种溶剂转移到另一种溶剂的过程。如用CCl4萃取溴水中的Br2。
②反萃取:用反萃取剂使被萃取物从负载有机相返回水相的过程,为萃取的逆过程。
(5)其他
①蒸发时的气体氛围抑制水解:如从溶液中析出FeCl3、AlCl3、MgCl2等溶质时,应在HCl的气流中加热,以防其水解。
②减压蒸馏的原因:减小压强,使液体沸点降低,防止受热分解、氧化等。

典 题 精 研
考向 化工流程中物质的分离与提纯
例2 磁选后的炼铁高钛炉渣,主要成分有TiO2、SiO2、Al2O3、MgO、CaO以及少量的Fe2O3,为节约和充分利用资源,通过如下工艺流程回收钛、铝、镁等。
该工艺条件下,有关金属离子开始沉淀和沉淀完全的pH见下表:
回答下列问题:
(1)“水浸”后“滤液”的pH约为2.0,在“分步沉淀”时用氨水逐步调节pH至11.6,依次析出的金属离子是_________________。
(2)“水浸渣”在160 ℃“酸溶”,最适合的酸是________。“酸溶渣”的成分是________、________。
(3)将“母液①”和“母液②”混合,吸收尾气,经处理得________,循环利用。
金属离子 Fe3+ Al3+ Mg2+ Ca2+
开始沉淀的pH 2.2 3.5 9.5 12.4
沉淀完全(c=1.0×10-5 mol·L-1)的pH 3.2 4.7 11.1 13.8
Fe3+、Al3+、Mg2+
硫酸
SiO2
CaSO4
(NH4)2SO4
解析:(1)结合相关金属离子开始沉淀以及沉淀完全时的pH可知,加氨水调节pH至11.6的过程中,Fe3+、Al3+、Mg2+依次沉淀。(2)由于常见的盐酸和硝酸均具有挥发性,且水浸渣需在160 ℃酸溶,因此最适宜的酸为硫酸。由于SiO2不溶于硫酸,焙烧过程中得到的CaSO4难溶于水,故酸溶渣的成分为SiO2、CaSO4。(3)结合图示流程可知,母液①中含有氨水、硫酸铵,母液②中含有硫酸,二者混合后再吸收尾气NH3,经处理得到(NH4)2SO4。
方法规律
循环物质的确定
练2 工业上常采用堆浸—反萃取—电积法从锌矿(主要成分为ZnS,含有FeS2、CuS、NiS、SiO2等杂质)中获得锌,其流程如图所示。
已知:①“堆浸”时金属硫化物均转化为硫酸盐;②pH较高时,氢氧化氧铁为胶状沉淀;③在我国,富矿少、贫矿多,品位低于5%的矿山属于贫矿。回答下列问题:
(1)“萃取”时需要进行多次萃取且合并萃取液,其目的是_____________________________________,操作③的名称为________,此流程中可循环利用的物质有锌、萃取剂和________。
(2)反萃液的主要成分为ZnSO4,可通过一系列反应制备对可见光敏感的半导体催化剂。其中在无氧条件下灼烧ZnFe2(C2O4)3·6H2O获得产品ZnFe2O4时发生反应的化学方程式为
___________________________________________________________,
灼烧时需要借助马弗炉(Mufflefurnace,一种通用的加热设备,通常叫电炉等)和下列哪些仪器________(填字母)共同完成。
充分萃取,提高Zn2+的萃取率、以提高Zn2+的利用率
分液
H2SO4
ZnFe2(C2O4)3·6H2OZnFe2O4+4CO↑+2CO2↑+6H2O
e
解析:(1)“萃取”时需要进行多次萃取且合并萃取液,其目的是充分萃取,提高Zn2+的萃取率、以提高Zn2+的利用率,由题干信息可知,操作③分离两种互不相溶的液体,则该分离操作的名称为分液,电解反萃液是电解硫酸锌溶液,得到Zn和H2SO4,此流程中可循环利用的物质有锌、萃取剂和H2SO4。(2)反萃液的主要成分为ZnSO4,可通过一系列反应制备对可见光敏感的半导体催化剂ZnFe2O4。其中在无氧条件下灼烧ZnFe2(C2O4)3·6H2O获得产品ZnFe2O4时发生反应的化学方程式为:ZnFe2(C2O4)3·6H2OZnFe2O4+4CO↑+2CO2↑+6H2O,灼烧固体应该在坩埚中进行。
考点3 化工流程中方程式的书写与计算
核 心 梳 理
1.化工流程中化学方程式的书写思路
获取信息 首先根据题给材料中的信息写出部分反应物和生成物的化学式,再根据反应前后元素化合价有无变化判断反应类型
确定类型 类型1 元素化合价无变化则为非氧化还原反应,遵循质量守恒定律
类型2 元素化合价有变化则为氧化还原反应,除遵循质量守恒外,还要遵循得失电子守恒规律
规范作答 最后根据题目要求写出化学方程式或离子方程式(需要遵循电荷守恒规律)即可
2.化工流程中的有关计算
(1)有关Ksp的计算
常考形式有:①判断能否沉淀;②判断能否沉淀完全;③计算某一离子的浓度;④沉淀生成和沉淀完全时pH的计算。
(2)产率、纯度的计算
①计算公式
纯度=×100%
产物的产率=×100%
②计算方法:守恒法或关系式法。

典 题 精 研
考向 化工流程中方程式的书写与计算
例3 用软锰矿(主要成分为MnO2,含少量Fe3O4、Al2O3)和BaS制备高纯MnCO3的工艺流程如下:
已知:MnO2是一种两性氧化物;25 ℃时相关物质的Ksp见下表。
物质 Fe(OH)2 Fe(OH)3 Al(OH)3 Mn(OH)2
Ksp 1×10-16.3 1×10-38.6 1×10-32.3 1×10-12.7
回答下列问题:
(1)软锰矿预先粉碎的目的是
__________________________________,
MnO2与BaS溶液反应转化为MnO的化学方程式为
___________________________________________________________。
(2)净化时需先加入的试剂X为________(填化学式),再使用氨水调溶液的pH,则pH的理论最小值为________(当溶液中某离子浓度c≤1.0×10-5 mol·L-1时,可认为该离子沉淀完全)。
(3)碳化过程中发生反应的离子方程式为
___________________________________________________________。
增大接触面积,充分反应,提高反应速率
MnO2+BaS+H2O===Ba(OH)2+MnO+S
H2O2
4.9
+NH3·H2O===MnCO3↓++H2O
解析:(1)对软锰矿进行粉碎,其表面积增大,在后续加入硫化钡溶液时,固体与溶液接触面积大,充分反应,能提高反应速率。分析该制备工艺流程图可知,“反应”操作中硫化钡中的硫元素转化为硫单质,硫化钡中的钡元素转化为氢氧化钡,故软锰矿中的二氧化锰在“反应”操作中被硫化钡中的S2-还原,Mn元素由+4价转化为+2价,故MnO2与BaS溶液反应转化为MnO的化学方程式是MnO2+BaS+H2O===Ba(OH)2+MnO+S。(2)由软锰矿中的杂质成分有Fe3O4可知,其经过与S2-的“反应”操作后主要以Fe2+形式存在,结合表中四种氢氧化物的溶度积数据,为减少Mn(OH)2的损失,需将Fe2+转化为Fe3+,然后再调节溶液pH,使杂质Fe3+转化为Fe(OH)3,故“净化”操作中需加入氧化剂,结合后续操作中的物质转化可知,“净化”操作中加入的试剂X为过氧化氢(H2O2)溶液。对比表中的溶度积数据可知,相较于Fe(OH)3,Al(OH)3的溶度积较大,若要除去Al(OH)3、Fe(OH)3两种杂质,以前者的溶度积进行计算,推知调节溶液的pH大小,由已知信息可知,沉淀完全的最大金属离子浓度为1.0×10-5 mol·L-1,此时c3(OH-)=Ksp[Al(OH)3]/c(Al3+)==1×10-27.3 mol3·L-3,则c(OH-)=1×10-9.1 mol·L-1,c(H+)= mol·L-1=,此时pH=4.9。(3)由工艺流程图中的“碳化”操作可知,该操作中加入的物质是碳酸氢铵、氨水,而“压滤”操作后的滤液中含Mn2+,由目标产物可知,该反应的生成物中有碳酸锰,故“碳化”过程中发生反应的离子方程式是+NH3·H2O===MnCO3↓++H2O。
练3 某废钒渣(主要成分为V2O3,含有少量Al2O3、CaO)为原料生产V2O5的工艺流程如图:
已知:钒酸(H3VO4)是强酸,NH4VO3难溶于水;+5价钒在溶液中的主要存在形式与溶液pH的关系如表。
pH 4~6 6~8 8~10 10~12
主要离子
(1)已知Ca(VO3)2难溶于水,可溶于盐酸。若“酸浸”时溶液的pH=4,则Ca(VO3)2溶于盐酸的离子方程式为
______________________________________________。
(2)Ksp(CaCO3)=m,Ksp[Ca3(VO4)2]=n;则反应Ca3(VO4)2(s)+3 2 (aq)+3CaCO3(s)的平衡常数为____________。(用含m、n的代数式表示)
(3)NH4VO3灼烧脱氨可得V2O5。在硫酸酸化条件下,V2O5可与草酸(H2C2O4)溶液反应得到含VO2+的溶液,反应的离子方程式为
____________________________________________。
+2H2O
V2O5+ H2C2O4+4H+===2VO2++2CO2↑+3H2O
(4)测定产品中V2O5的纯度:取a g产品用硫酸溶解得(VO2)2SO4溶液,加入b1mL c1 mol·L-1(NH4)2Fe(SO4)2溶液(+2H++Fe2+===VO2++Fe3++H2O),再用c2 mol·L-1KMnO4溶液滴定过量的(NH4)2Fe(SO4)2至终点,消耗KMnO4溶液的体积为b2 mL。已知被还原为Mn2+,假设杂质不参与反应。则产品中V2O5的质量分数是___________(V2O5的摩尔质量为M g·mol-1)。
%
解析:由题给流程可知,废钒渣中加入CaO在空气中焙烧时,V2O3与CaO、空气中的氧气反应转化为Ca(VO3)2,Al2O3与CaO反应转化为Ca(AlO2)2;向焙烧后的固体中加入盐酸,将Ca(VO3)2转化为H3VO4,Ca(AlO2)2转化为沉淀,过滤得到含有Al(OH)3的滤渣1和含有H3VO4的滤液;向滤液中加入石灰乳,将H3VO4转化为Ca3(VO4)2沉淀,过滤得到滤液1和Ca3(VO4)2;向中加入碳酸铵溶液,将Ca3(VO4)2转化为(NH3)3VO4,过滤得到含有CaCO3的滤渣2和含有(NH3)3VO4的滤液;向滤液中加入氯化铵固体,将(NH3)3VO4转化为NH4VO3沉淀,过滤得到滤液2和NH4VO3;NH4VO3灼烧脱氨制得V2O5。(1)酸浸前将块状固体粉碎,可以增大反应物的接触面积,加快酸浸速率,使酸浸更加充分;由表格信息可知,溶液pH为4时,钒元素在溶液中以形式存在,则Ca(VO3)2与盐酸反应生成CaCl2、VO2Cl和H2O,反应的离子方程式为+2H2O。
(2)由方程式可知,反应的平衡常数K====。(3)由题意可知,在硫酸酸化条件下,V2O5与H2C2O4溶液反应生成VO2+、CO2和H2O,反应的离子方程式为V2O5+ H2C2O4+4H+===2VO2++2CO2↑+3H2O。(4)测定产品中五氧化二钒的纯度时,五氧化二钒和高锰酸钾为反应的氧化剂,硫酸亚铁铵为还原剂,由得失电子数目守恒可得:n(Fe2+)=2n(V2O5)+),由题给数据可得五氧化二钒的物质的量为=mol,则样品中五氧化二钒的纯度为×100%=%。
模考精练·抓落实
1.LiMn2O4作为一种新型锂电池正极材料受到广泛关注。由菱锰矿(MnCO3,含有少量Si、Fe、Ni、Al等元素)制备LiMn2O4的流程如下:
已知:Ksp[Fe(OH)3]=2.8×10-39,
Ksp[Al(OH)3]=1.3×10-33,Ksp[Ni(OH)2]=5.5×10-16。
回答下列问题:
(1)硫酸溶矿主要反应的化学方程式为____________________________。为提高溶矿速率,可采取的措施________(举1例)。
(2)加入少量MnO2的作用是________________。不宜使用H2O2替代MnO2,原因是_____________________________________。
MnCO3+H2SO4===MnSO4+H2O+CO2↑
粉碎菱锰矿
将Fe2+氧化为Fe3+
Fe3+可以催化H2O2分解
(3)溶矿反应完成后,反应器中溶液pH=4,此时c(Fe3+)=________ mol·L-1;用石灰乳调节至pH≈7,除去的金属离子是________。
(4)加入少量BaS溶液除去Ni2+,生成的沉淀有_________。
(5)在电解槽中,发生电解反应的离子方程式为
_________________________________________________________。
随着电解反应进行,为保持电解液成分稳定,应不断________。电解废液可在反应器中循环利用。
(6)煅烧窑中,生成LiMn2O4反应的化学方程式是
_________________________________________________。
2.8×10-9
Al3+
BaSO4、NiS
Mn2++2H2OH2↑+MnO2↓+2H+
加水
2Li2CO3+8MnO24LiMn2O4+2CO2↑+O2↑
解析:根据题给的流程,将菱锰矿置于反应器中,加入硫酸和MnO2,可将固体溶解为离子,将杂质中的Fe、Ni、Al等元素物质也转化为其离子形式,同时,加入的MnO2可以将溶液中的Fe2+氧化为Fe3+;随后将溶液pH调至约等于7,此时,根据已知条件给出的三种氢氧化物的溶度积可知,可以将溶液中的Al3+沉淀出来;随后加入BaS,可以将溶液中的Ni2+沉淀,得到相应的滤渣;后溶液中含有大量的Mn2+,将此溶液置于电解槽中电解,得到MnO2,将MnO2与碳酸锂共同煅烧得到最终产物LiMn2O4。
(1)菱锰矿中主要含有MnCO3,加入硫酸后可以与其反应,硫酸溶矿主要反应的化学方程式为:MnCO3+H2SO4===MnSO4+H2O+CO2↑;为提高溶矿速率,可以将菱锰矿粉碎。
(2)根据分析,加入MnO2的作用是将酸溶后溶液中含有的Fe2+氧化为Fe3+,但不宜使用H2O2氧化Fe2+,因为Mn2+和氧化后生成的Fe3+可以催化H2O2分解,原料利用率低。
(3)溶矿完成以后,反应器中溶液pH=4,此时溶液中c(OH-)=1.0×10-10 mol·L-1,此时体系中含有的c(Fe3+)==2.8×10-9 mol·L-1,这时,溶液中的c(Fe3+)小于1.0×10-5,认为Fe3+已经沉淀完全;用石灰乳调节至pH≈7,这时溶液中c(OH-)=1.0×10-7 mol·L-1,溶液中c(Al3+)=1.3×10-12 mol·L-1,c(Ni2+)=5.5×10-2mol·L-1,c(Al3+)小于1.0×10-5,Al3+沉淀完全,这一阶段除去的金属离子是Al3+。
(4)加入少量BaS溶液除去Ni2+,此时溶液中发生反应的离子方程式为===BaSO4↓+NiS↓,生成的沉淀有BaSO4、NiS。
(5)在电解槽中,Mn2+发生反应生成MnO2,反应的离子方程式为Mn2++2H2OH2↑+MnO2↓+2H+;电解时电解液中消耗水、生成H2SO4,为保持电解液成分稳定,应不断补充水。
(6)煅烧窑中MnO2与Li2CO3发生反应生成LiMn2O4,反应的化学方程式为2Li2CO3+8MnO24LiMn2O4+2CO2↑+O2↑。
2.以银锰精矿(主要含Ag2S、MnS、FeS2)和氧化锰矿(主要含MnO2)为原料联合提取银和锰的一种流程示意图如下。
已知:酸性条件下,MnO2的氧化性强于Fe3+。
(1)“浸锰”过程是在H2SO4溶液中使矿石中的锰元素浸出,同时去除FeS2,有利于后续银的浸出;矿石中的银以Ag2S的形式残留于浸锰渣中。
①“浸锰”过程中,发生反应MnS+2H+===Mn2++H2S↑,则可推断:Ksp(MnS)______(填“>”或“<”)Ksp(Ag2S)。
②在H2SO4溶液中,银锰精矿中的FeS2和氧化锰矿中的MnO2发生反应,则浸锰液中主要的金属阳离子有__________。
>
Fe3+、Mn2+
(2)“浸银”时,使用过量FeCl3、HCl和CaCl2的混合液作为浸出剂,将Ag2S中的银以[AgCl2]-形式浸出。
①将“浸银”反应的离子方程式补充完整:
②结合平衡移动原理,解释浸出剂中Cl-、H+的作用:
__________________________________________________________。
2Fe3++Ag2S+4Cl- 2Fe2++2[AgCl2]-+S
Cl-与Ag2S电离出的Ag+结合生成[AgCl2]-,使平衡正向移动,提高Ag2S的浸出率;H+可抑制Fe3+水解,防止生成Fe(OH)3沉淀
(3)“沉银”过程中需要过量的铁粉作为还原剂。
①该步反应的离子方程式有
______________________________________________。
②一定温度下,Ag的沉淀率随反应时间的变化如图所示。解释t分钟后Ag的沉淀率逐渐减小的原因:________________________。
(4)结合“浸锰”过程,从两种矿石中各物质利用的角度,分析联合提取银和锰的优势:________________________________________。
2[AgCl2]-+Fe===Fe2++2Ag+4Cl-、2Fe3++Fe===3Fe2+
Fe2+被氧气氧化为Fe3+,Fe3+把Ag氧化为Ag+
可将两种矿石中的锰元素同时提取到浸锰液中,得到MnSO4,同时将银元素和锰元素分离开;生成的Fe3+还可以用于浸银,节约氧化剂
解析:(1)①“浸锰”过程中,矿石中的银以Ag2S的形式残留于浸锰渣中,MnS发生反应MnS+2H+===Mn2++H2S↑,硫化锰溶于强酸而硫化银不溶于强酸,则可推断:Ksp(MnS)>Ksp(Ag2S);
②根据信息,在H2SO4溶液中二氧化锰可将Fe2+氧化为Fe3+,自身被还原为Mn2+,则浸锰液中主要的金属阳离子有Fe3+、Mn2+。
(2)①Ag2S中S元素化合价升高,Fe元素化合价降低,根据得失电子守恒、元素守恒,该离子方程式为2Fe3++Ag2S+4Cl- 2Fe2++2[AgCl2]-+S;
②Cl-与Ag2S电离出的Ag+结合生成[AgCl2]-,使平衡正向移动,提高Ag2S的浸出率;H+可抑制Fe3+水解,防止生成Fe(OH)3沉淀。
(3)①铁粉可将[AgCl2]-还原为单质银,过量的铁粉还可以与铁离子发生反应,因此离子方程式为2[AgCl2]-+Fe===Fe2++2Ag+4Cl-、2Fe3++Fe===3Fe2+;
②溶液中生成的Fe2+会被空气中的氧气缓慢氧化为Fe3+,Fe3+把部分Ag氧化为Ag+,因此t min后银的沉淀率逐渐降低。
(4)联合提取银和锰的优势在于“浸锰”过程可将两种矿石中的锰元素同时提取到浸锰液中,将银元素和锰元素分离开,利用MnO2的氧化性将FeS2中的Fe2+氧化为Fe3+,同时生成的Fe3+还可以用于浸银,节约氧化剂,同时得到MnSO4。
3.铈可用作优良的环保材料,现以氟碳铈矿(CeFCO3,含Fe2O3、FeO等杂质)为原料制备铈,其工艺流程如图所示:
已知:
①滤渣Ⅰ主要成分是难溶于水的Ce(BF4)3;Ksp[Fe(OH)3]=8×10-38;②Ksp[Ce(OH)3]=1×10-22;③lg 2=0.3。
回答下列问题:
(1)粉碎“焙烧”时,氧化数据如表所示:
在对流空气氧化炉中可大大缩短氧化时间的原因是_____________________________。
(2)用盐酸和H3BO3提取Ce元素时,体现盐酸的性质有________,“滤渣Ⅰ”用饱和KCl溶液溶解时发生复分解反应,则“滤渣Ⅱ”主要成分为________(化学式)。
空气氧化法 氧化温度/℃ 氧化率/% 氧化时间/h
暴露空气中 450~500 80 14
对流空气氧化炉中 450~500 98 6
增大了气体与固体粉末间的接触面积
酸性、还原性
KBF4
(3)“滤液Ⅰ”中c(Ce3+)=0.1 mol·L-1,用氨水调pH的范围是________,“滤液Ⅱ”中加入NH4HCO3反应的离子方程式为____________________________________,若Ce2(CO3)3经充分焙烧质量减少5.8 t,则获得CeO2的质量为________t。
(4)用过量铝粉还原CeO2即可得Ce,反应的化学方程式为__________________________,铝粉必须过量的原因?
3.3≤pH<7
===Ce2(CO3)3+3CO2↑+3H2O
17.2
3CeO2+4Al2Al2O3+3Ce
使CeO2全部转化为Ce;铝与氧气反应,放出大量的热,营造高温环境
解析:(1)在对流空气氧化炉中可大大缩短氧化时间的原因是增大了气体与固体粉末间的接触面积。氟碳铈矿含CeFCO3、Fe2O3、FeO等,在空气中焙烧,Ce3+在空气中被氧化为Ce4+,Fe2+氧化为Fe3+,用盐酸和H3BO3浸取,Fe3+进入溶液,过滤分离,滤渣Ⅰ主要成分是难溶于水的,“滤渣Ⅰ”用饱和KCl溶液溶解时发生复分解反应,生成KBF4和CeCl3溶液,滤渣Ⅱ是KBF4。滤液ⅡCe3+溶液中,再加入碳酸氢铵使Ce3+沉淀为Ce2(CO3)3,最后灼烧分解生成CeO2,还原得到Ce。(2)用盐酸和H3BO3提取Ce元素时,CeF4、CeO2、Fe2O3与盐酸和H3BO3反应生成了Ce(BF4)3、FeCl3,Ce元素由+4变为+3,硼元素化合价不变,所以只能是盐酸体现酸性、还原性;滤渣Ⅰ主要成分是难溶于水的,“滤渣Ⅰ”用饱和KCl溶液溶解时发生复分解反应,生成KBF4和CeCl3溶液,则“滤渣Ⅱ”主要成分为KBF4(化学式)。
(3)“滤液Ⅰ”中c(Ce3+)=0.1 mol·L-1,Ce3+开始沉淀时,Ksp[Ce(OH)3]=1×10-22,c(OH-)= mol·L-1=10-7 mol·L-1,c(H+)=10-7 mol·L-1,pH=7,铁离子沉淀完全时,Ksp[Fe(OH)3]=8×10-38,c(OH-)= mol·L-1=2×10-11 mol·L-1,c(H+)= mol·L-1= mol·L-1,pH=-lg=3.3,用氨水调pH的范围是3.3≤pH<7,“滤液Ⅱ”中加入NH4HCO3反应,生成碳酸铈、二氧化碳和水,离子方程式为===Ce2(CO3)3+3CO2↑+3H2O;若Ce2(CO3)3经充分焙烧质量减少5.8 t,由差量法:
2Ce2(CO3)3+O2===6CO2+4CeO2   Δm
4×172 t 232 t
  m 5.8 t
m= t=17.2 t 则获得CeO2的质量为17.2 t。
(4)用过量铝粉还原CeO2即可得Ce,反应的化学方程式为3CeO2+4Al2Al2O3+3Ce,铝粉必须过量的原因是使CeO2全部转化为Ce;铝与氧气反应,放出大量的热,营造高温环境。
4.钌(Ru)为稀有元素,广泛应用于电子、航空航天、化工等领域。某含钌的废渣主要成分为Ru、Pb、SiO2、Bi2O3,一种从中回收Ru制RuCl3的工艺流程如下:
(1)“氧化碱浸”时,两种氧化剂在不同温度下对钌浸出率和渣率分别如图1、图2所示,则适宜选择的氧化剂为________;最佳反应温度为________。
NaClO
220℃
(2)滤液1中溶质主要成分为、NaBiO2、NaHPbO2和________;NaHPbO2中Pb的化合价为________;Bi2O3转化为NaBiO2的化学方程式为________________________________。
(3)“还原”过程生成Ru(OH)4和乙醛,且pH明显增大,则该过程的
离子反应方程式为___________________________________________。
(4)“吸收”过程产生的气体X经Y溶液吸收后,经进一步处理可以循环利用,则X和Y的化学式分别为________、________。
Na2SiO3
+2价
Bi2O3+2NaOH===2NaBiO2+H2O 
+CH3CH2OH+2H2O―→Ru(OH)4↓+ CH3CHO +2OH—
Cl2
NaOH
(5)RuCl3在有机合成中有重要应用,其参与某有机物合成的路线如下图3所示(HAc代表乙酸,Ph代表苯基),则下列说法正确的是________。
A.RuCl3为催化剂
B.H2O2作还原剂
C.HAc为中间产物
D.主要生成物为
D
解析:(1)由图可知,相同温度时,次氯酸钠做氧化剂时的钌浸出率高于氯酸钠、渣率低于氯酸钠,则适宜选择的氧化剂为次氯酸钠;220℃时,钌浸出率最大、渣率最小;(2)由题给流程可知,含钌的废料中加入氢氧化钠溶液和次氯酸钠溶液氧化碱浸时,Ru和Pb被氧化为和NaHPbO2,SiO2和Bi2O3与氢氧化钠溶液反应生成Na2SiO3和NaBiO2,反应的化学方程式为Bi2O3+2NaOH===2NaBiO2+H2O;过滤得到含有、NaBiO2、NaHPbO2和Na2SiO3的滤液1;Ru(OH)4在蒸馏条件下被氯酸钾氧化为RuO4,RuO4与盐酸反应生成RuCl3、Cl2和H2O,RuCl3溶液经结晶得到RuCl3;(3)由(2)分析可知,溶液中与乙醇反应生成Ru(OH)4沉淀、乙醛和氢氧根离子,反应的离子方程式为+CH3CH2OH+2H2O―→Ru(OH)4↓+ CH3CHO +2OH—;
(4)由(2)分析可知,气体X为氯气,氯气与氢氧化钠溶液反应生成氯化钠、次氯酸钠和水,经进一步处理得到的次氯酸钠溶液可以循环利用,则Y为氢氧化钠溶液;(5)由图可知,Ru(Ac)3为反应的催化剂,醋酸、过氧化氢、CH3CH===CHPh为反应物, 和水是生成物,反应中过氧化氢中氧元素化合价降低被还原,为反应的氧化剂,故选D。(共103张PPT)
专题十二 综合实验探究
真题研练·析考情
核心突破·提能力
模考精练·抓落实
真题研练·析考情
真题研练
1.[2023·新课标卷]实验室由安息香制备二苯乙二酮的反应式如下:
相关信息列表如下:
物质 性状 熔点/℃ 沸点/℃ 溶解性
安息香 白色固体 133 344 难溶于冷水溶于热水、乙醇、乙酸
二苯乙二酮 淡黄色固体 95 347 不溶于水溶于乙醇、苯、乙酸
冰乙酸 无色液体 17 118 与水、乙醇互溶
装置示意图如下图所示,实验步骤为:
①在圆底烧瓶中加入10 mL冰乙酸、5 mL水及9.0 g FeCl3·6H2O,边搅拌边加热,至固体全部溶解。
②停止加热,待沸腾平息后加入2.0 g安息香,加热回流45~60 min。
③加入50 mL水,煮沸后冷却,有黄色固体析出。
④过滤,并用冷水洗涤固体3次,得到粗品。
⑤粗品用75%的乙醇重结晶,干燥后得淡黄色结晶1.6 g。
回答下列问题:
(1)仪器A中应加入____(填“水”或“油”)作为热传导介质。
(2)仪器B的名称是__________;冷却水应从____(填“a”或“b”)口通入。
(3)实验步骤②中,安息香必须待沸腾平息后方可加入,其主要目的是________。
(4)在本实验中,FeCl3为氧化剂且过量,其还原产物为________;某同学尝试改进本实验:采用催化量的FeCl3并通入空气制备二苯乙二酮。该方案是否可行________?简述判断理?。

球形冷凝管
a
防暴沸
FeCl2
可行
空气可以将还原产物FeCl2又氧化为FeCl3,FeCl3可循环参与反应
(5)本实验步骤①~③在乙酸体系中进行,乙酸除作溶剂外,另一主要作用是防止________。
(6)若粗品中混有少量未氧化的安息香,可用少量____洗涤的方法除去(填标号)。若要得到更高纯度的产品,可用重结晶的方法进一步提纯。
a.热水   b.乙酸 c.冷水   d.乙醇
(7)本实验的产率最接近于________(填标号)。
a.85% b.80% c.75% d.70%
Fe3+水解
a
b
解析:(1)该实验需要加热使冰乙酸沸腾,冰乙酸的沸点超过了100℃,应选择油浴加热,所以仪器A中应加入油作为热传导介质;(2)根据仪器的结构特征可知,B为球形冷凝管,为了充分冷却,冷却水应从a口进,b口出;(3)步骤②中,若沸腾时加入安息香(其室温下为固体),会暴沸,所以需要沸腾平息后加入;(4)FeCl3为氧化剂,则铁的化合价降低,还原产物为FeCl2,若采用催化量的FeCl3并通入空气制备二苯乙二酮,空气可以将还原产物FeCl2又氧化为FeCl3,FeCl3可循环参与反应;(5)FeCl3易水解,乙酸还可以防止Fe3+水解;(6)根据安息香和二苯乙二酮的溶解特征,安息香溶于热水,二苯乙二酮不溶于水,所以可以采用热水洗涤粗品除去安息香;(7)2.0 g安息香(C14H12O2)的物质的量约为0.009 4 mol,理论上可产生二苯乙二酮(C14H10O2)的物质的量约为0.009 4 mol,质量约为1.98 g,产率为×100%=80.8%,最接近80%。
2.[2023·湖南卷]金属Ni对H2有强吸附作用,被广泛用于硝基或羰基等不饱和基团的催化氢化反应。将块状Ni转化成多孔型雷尼Ni后,其催化活性显著提高。
已知:①雷尼Ni暴露在空气中可以自燃,在制备和使用时,需用水或有机溶剂保持其表面“湿润”;
②邻硝基苯胺在极性有机溶剂中更有利于反应的进行。
某实验小组制备雷尼Ni并探究其催化氢化性能的实验如下:
步骤1:雷尼Ni的制备
步骤2:邻硝基苯胺的催化氢化反应
反应的原理和实验装置图如下(夹持装置和搅拌装置略)。装置Ⅰ用于储存H2和监测反应过程。
回答下列问题:
(1)操作(a)中,反应的离子方程式是
___________________________________________________________;
(2)操作(d)中,判断雷尼Ni被水洗净的方法是
__________________________________________________________;
(3)操作(e)中,下列溶剂中最有利于步骤2中氢化反应的是________;
A.丙酮 B.四氯化碳
C.乙醇 D.正己烷
+3H2↑
向最后一次水洗液中加入酚酞,不变红
C
(4)向集气管中充入H2时,三通阀的孔路位置如下图所示;发生氢化反应时,集气管向装置Ⅱ供气,此时孔路位置需调节为________;
向集气管中充入H2
集气管向装置Ⅱ供气
(5)仪器M的名称是__________;
(6)反应前应向装置Ⅱ中通入N2一段时间,目的是___________________;
(7)如果将三颈瓶N中的导气管口插入液面以下,可能导致的后果是_______________;
(8)判断氢化反应完全的现象是_______________________。
B
恒压滴液漏斗 
排除空气产生的干扰
雷尼Ni堵塞导管
水准瓶中液面不再发生变化
解析:(1)结合图示流程可知,操作(a)为用NaOH溶液处理Ni/Al合金,Al和NaOH溶液反应生成NaAlO2和H2,离子方程式为+3H2↑。(2)水洗的上一步是碱洗,若雷尼Ni被水洗净,则最后一次水洗液中不含碱,加入酚酞溶液不变红。(3)根据题中信息可知,雷尼Ni被广泛用于硝基或羰基等不饱和基团的催化氢化反应,故不能选丙酮,否则会发生副反应,又因为邻硝基苯胺在极性有机溶剂中更有利于反应进行,而CCl4、正己烷均为非极性分子,乙醇为极性分子,所以应选乙醇。(4)根据向集气管中通入H2时三通阀的孔路位置,可确定集气管向装置Ⅱ中供气时,应保证下侧、右侧孔路通气,故B正确。(6)为了排除装置中空气产生的干扰,反应前应向装置Ⅱ中通入一段时间N2。(7)三颈瓶N中为雷尼Ni的悬浮液,若将导气管插入液面下,雷尼Ni会堵塞导管。(8)氢化反应完全时,装置Ⅱ中不再消耗H2,装置I中水准瓶的液面不再发生变化。
3.[2022·山东卷]实验室利用FeCl2·4H2O和亚硫酰氯(SOCl2)制备无水FeCl2的装置如图所示(加热及夹持装置略)。已知SOCl2沸点为76 ℃,遇水极易反应生成两种酸性气体。回答下列问题:
(1)实验开始先通N2。一段时间后,先加热装置________(填“a”或“b”)。
装置b内发生反应的化学方程式为______________________________。装置c、d共同起到的作用是______________。
a
FeCl2·4H2O+4SOCl2FeCl2+4SO2↑+8HCl↑
冷凝回流SOCl2
(2)现有含少量杂质的FeCl2·nH2O,为测定n值进行如下实验:
实验Ⅰ:称取m1 g样品,用足量稀硫酸溶解后,用c mol·L-1K2Cr2O7标准溶液滴定Fe2+达终点时消耗V mL(滴定过程中转化为Cr3+,Cl-不反应)。
实验Ⅱ:另取m1 g样品,利用上述装置与足量SOCl2反应后,固体质量为m2 g。
则n=______________;下列情况会导致n测量值偏小的是________(填标号)。
A.样品中含少量FeO杂质
B.样品与SOCl2反应时失水不充分
C.实验Ⅰ中,称重后样品发生了潮解
D.滴定达终点时发现滴定管尖嘴内有气泡生成
AB
(3)用上述装置、根据反应TiO2+CCl4TiCl4+CO2制备TiCl4。已知TiCl4与CCl4分子结构相似,与CCl4互溶,但极易水解。选择合适仪器并组装蒸馏装置对TiCl4、CCl4混合物进行蒸馏提纯(加热及夹持装置略),安装顺序为①⑨⑧_________(填序号),先馏出的物质为________。
⑥⑩③⑤
CCl4
解析:SOCl2与H2O反应生成两种酸性气体,FeCl2·4H2O与SOCl2制备无水FeCl2的反应原理为SOCl2吸收FeCl2·4H2O受热失去的结晶水生成SO2和HCl,HCl可抑制FeCl2的水解,从而制得无水FeCl2。
(1)实验开始时先通N2,排尽装置中的空气,一段时间后,先加热装置a,产生SOCl2气体充满b装置后再加热b装置,装置b中发生反应的化学方程式为FeCl2·4H2O+4SOCl2FeCl2+4SO2↑+8HCl↑;装置c、d的共同作用是冷凝回流SOCl2。
(2)滴定过程中将Fe2+氧化成Fe3+,自身被还原成Cr3+,反应的离子方程式为+14H+===6Fe3++2Cr3++7H2O,则m1 g样品中n(FeCl2)=)=6 cV×10-3 mol;m1g样品中结晶水的质量为(m1-m2) g,结晶水物质的量为 mol,n(FeCl2)∶n(H2O)=1∶n=(6 cV×10-3 mol)∶mol,解得n=;A项,样品中含少量FeO杂质,溶于稀硫酸后生成Fe2+,导致消耗的K2Cr2O7溶液的体积V偏大,使n的测量值偏小;B项,样品与SOCl2反应时失水不充分,则m2偏大,使n的测量值偏小;C项,实验Ⅰ称重后,样品发生了潮解,样品的质量不变,消耗的K2Cr2O7溶液的体积V不变,使n的测量值不变;D项,滴定达到终点时发现滴定管尖嘴内有气泡生成,导致消耗的K2Cr2O7溶液的体积V偏小,使n的测量值偏大。
(3)组装蒸馏装置对TiCl4、CCl4混合物进行蒸馏提纯,按由下而上、从左到右的顺序组装,安装顺序为①⑨⑧,然后连接冷凝管,蒸馏装置中应选择直形冷凝管⑥、不选用球形冷凝管⑦,接着连接尾接管⑩,TiCl4极易水解,为防止外界水蒸气进入,最后连接③⑤,安装顺序为①⑨⑧⑥⑩③⑤;由于TiCl4、CCl4分子结构相似,TiCl4的相对分子质量大于CCl4,TiCl4分子间的范德华力较大,TiCl4的沸点高于CCl4,故先馏出的物质为CCl4。
4.[2022·广东卷]食醋是烹饪美食的调味品,有效成分主要为醋酸(用HAc表示)。HAc的应用与其电离平衡密切相关。25 ℃时,HAc的Ka=1.75×10-5=10-4.76。
(1)配制250 mL 0.1 mol·L-1的HAc溶液,需5 mol·L-1HAc溶液的体积为________mL。
(2)下列关于250 mL容量瓶的操作,正确的是________。
5.0
C
提出假设 稀释HAc溶液或改变Ac-浓度,HAc电离平衡会发生移动。
设计方案并完成实验 用浓度均为0.1 mol·L-1的HAc和NaAc溶液,按下表配制总体积相同的系列溶液;测定pH,记录数据。
序号 V(HAc)/mL V(NaAc)/mL V(H2O)/mL n(NaAc)∶n(HAc) pH
Ⅰ 40.00 / / 0 2.86
Ⅱ 4.00 / 36.00 0 3.36

Ⅶ 4.00 a b 3∶4 4.53
Ⅷ 4.00 4.00 32.00 1∶1 4.65
①根据表中信息,补充数据:a=________,b=________。
②由实验Ⅰ和Ⅱ可知,稀释HAc溶液,电离平衡________(填“正”或“逆”)向移动;结合表中数据,给出判断理由:
__________________________________________________________。
③由实验Ⅱ~Ⅷ可知,增大Ac-浓度,HAc电离平衡逆向移动。
3.00
33.00

实验Ⅱ相较于实验Ⅰ,醋酸溶液稀释了10倍,而实验Ⅱ的pH增大值小于1
实验结论 假设成立。
(4)小组分析上表数据发现:随着的增加,c(H+)的值逐渐接近HAc的Ka。
查阅资料获悉:一定条件下,按=1配制的溶液中,c(H+)的值等于HAc的Ka。
对比数据发现,实验Ⅷ中pH=4.65与资料数据Ka=10-4.76存在一定差异;推测可能由物质浓度准确程度不够引起,故先准确测定HAc溶液的浓度再验证。
①移取20.00 mL HAc溶液,加入2滴酚酞溶液,用0.100 0 mol·L-1NaOH溶液滴定至终点,消耗体积为22.08 mL,则该HAc溶液的浓度为________。画出上述过程的滴定曲线示意图并标注滴定终点。
0.110 4
②用上述HAc溶液和0.100 0 mol·L-1NaOH溶液,配制等物质的量的HAc与NaAc混合溶液,测定pH,结果与资料数据相符。
(5)小组进一步提出:如果只有浓度均约为0.1 mol·L-1的HAc和NaOH溶液,如何准确测定HAc的Ka?小组同学设计方案并进行实验。请完成下表中Ⅱ的内容。
Ⅰ 移取20.00 mL HAc溶液,用NaOH溶液滴定至终点,消耗NaOH溶液V1 mL
Ⅱ ______________________________________,测得溶液的pH为4.76
向滴定后的混合液中加入20 mL HAc溶液
实验总结 得到的结果与资料数据相符,方案可行。
(6)根据Ka可以判断弱酸的酸性强弱。写出一种无机弱酸及其用途
__________________________________________________________。
HClO:漂白剂和消毒液(或H2SO3:还原剂、防腐剂或H3PO4:食品添加剂、制药、生产肥料)
解析:(1)溶液稀释过程中,溶质的物质的量不变,因此250 mL×0.1 mol·L-1=V×5 mol·L-1,解得V=5.0 mL。
(2)容量瓶使用过程中,不能用手等触碰瓶口,以免污染试剂,故A错误;定容时,视线应与溶液凹液面和刻度线“三线相切”,不能仰视或俯视,故B错误;向容量瓶中转移液体,需用玻璃棒引流,玻璃棒下端位于刻度线以下,同时玻璃棒不能接触容量瓶口,故C正确;定容完成后,盖上瓶塞,将容量瓶来回颠倒,将溶液摇匀,颠倒过程中,左手食指抵住瓶塞,防止瓶塞脱落,右手扶住容量瓶底部,防止容量瓶从左手掉落,故D错误。
(3)①实验Ⅶ的溶液中n(NaAc)∶n(HAc)=3∶4,V(HAc)=4.00 mL,因此V(NaAc)=3.00 mL,即a=3.00,由实验Ⅰ可知,溶液最终的体积为40.00 mL,因此V(H2O)=40.00 mL-4.00 mL-3.00 mL=33.00 mL,即b=33.00。
②实验Ⅰ所得溶液的pH=2.86,实验Ⅱ的溶液中c(HAc)为实验Ⅰ的,稀释过程中,若不考虑电离平衡移动,则实验Ⅱ所得溶液的pH=2.86+1=3.86,但实际溶液的pH=3.36<3.86,说明稀释过程中,溶液中n(H+)增大,即电离平衡正向移动。
(4)滴定过程中发生反应:HAc+NaOH===NaAc+H2O,由反应方程式可知,滴定至终点时,n(HAc)=n(NaOH),因此22.08 mL×0.1 mol·L-1=20.00 mL×c(HAc),解得c(HAc)=0.110 4 mol·L-1。滴定过程中,当V(NaOH)=0时,c(H+)=≈mol·L-1=10-2.88mol·L-1,溶液的pH=2.88,当V(NaOH)=11.04 mL时,n(NaAc)=n(HAc),溶液的pH=4.76,当V(NaOH)=22.08 mL时,达到滴定终点,溶液中溶质为NaAc溶液,Ac-发生水解,溶液呈弱碱性,当NaOH溶液过量较多时,c(NaOH)无限接近0.1 mol·L-1,溶液pH接近13,因此滴定曲线如图:
(5)向20.00 mL的HAc溶液中加入V1mL NaOH溶液达到滴定终点,滴定终点的溶液中溶质为NaAc,当=1时,溶液中c(H+)的值等于HAc的Ka,因此可再向溶液中加入20.00 mL HAc溶液,使溶液中n(NaAc)=n(HAc)。
(6)不同的无机弱酸在生活中应用广泛,如HClO具有强氧化性,在生活中可用于漂白和消毒,H2SO3具有还原性,可用作还原剂,在葡萄酒中添加适量H2SO3可用作防腐剂,H3PO4具有中强酸性,可用作食品添加剂,同时在制药、生产肥料等行业有广泛用途。
5.[2022·河北卷]某研究小组为了更准确检测香菇中添加剂亚硫酸盐的含量,设计实验如下:
①三颈烧瓶中加入10.00 g香菇样品和400 mL水;锥形瓶中加入125 mL水、1 mL淀粉溶液,并预加0.30 mL 0.010 00 mol·L-1的碘标准溶液,搅拌。
②以0.2 L·min-1流速通氮气,再加入过量磷酸,加热并保持微沸,同时用碘标准溶液滴定,至终点时滴定消耗了1.00 mL碘标准溶液。
③做空白实验,消耗了0.10 mL碘标准溶液。
④用适量Na2SO3替代香菇样品,重复上述步骤,测得SO2的平均回收率为95%。
已知:
Ka1(H3PO4)=7.1×10-3,Ka1(H2SO3)=1.3×10-2
回答下列问题:
(1)装置图中仪器a、b的名称分别为__________、__________。
(2)三颈烧瓶适宜的规格为________(填标号)。
A.250 mL  B.500 mL  C.1 000 mL
(3)解释加入H3PO4能够生成SO2的原因:
_______________________________________________________。
(4)滴定管在使用前需要_______、洗涤、润洗;滴定终点时溶液的颜色为_____;滴定反应的离子方程式为________________________。
(5)若先加磷酸再通氮气,会使测定结果________(填“偏高”“偏低”或“无影响”)。
(6)该样品中亚硫酸盐含量为_____(以SO2计,结果保留三位有效数字)。
球形冷凝管
酸式滴定管
C
Ka1(H3PO4)与Ka1(H2SO3)相差不大,H3PO4与亚硫酸盐反应存在平衡:+H2SO3、H2SO3 H2O+SO2,加热使SO2不断逸出,促进反应向生成SO2的方向进行
检漏
蓝色
偏低
80.8
解析:(1)装置图中a是用于冷凝回流的球形冷凝管,b带玻璃旋塞,为酸式滴定管。
(2)三颈烧瓶中加入400 mL水,由于三颈烧瓶盛放的溶液体积不能超过其容积的,故选用1 000 mL,C正确。
(3)Ka1(H3PO4)与Ka1(H2SO3)相差不大,H3PO4与亚硫酸盐反应存在平衡:+H2SO3、H2SO3 H2O+SO2,加热使SO2不断逸出,促进反应向生成SO2的方向进行。
(4)滴定管使用前需检漏,在确认不漏液的情况下方可使用;淀粉遇碘变蓝,则滴定终点时,溶液呈蓝色;滴定过程中SO2被氧化为,I2被还原为I-,根据得失电子守恒、电荷守恒、原子守恒得反应的离子方程式为。
(5)若先加磷酸,生成的少量SO2被空气中的O2氧化,消耗的碘标准溶液减少使测定结果偏低。
(6)由离子方程式可得n(SO2)=n(I2),而V(I2)=V消耗+V预加-V空白=1.20 mL,则样品中亚硫酸盐含量为mg·kg-1≈80.8 mg·kg-1。
考情分析
题型 考向 预测
制备型综合实验 仪器的名称、选择及连接 综合性实验仍会以经典传统题型为主,注重对化学基本实验知识的考查,通过实验过程和实验装置的分析,要求回答仪器的名称及仪器的选择,常涉及除杂分离方法、尾气处理方法、实验现象描述、实验方案的设计或评价,体现对实验考查的全覆盖。除常见的题型外还要关注课本必做实验的改进、变式及实验设计与评价的题型。
实验条件的选择及控制 实验现象的描述 化学方程式、离子方程式的书写 产物的分离与提纯、尾气的处理 产品纯度或产率的计算 探究型综合实验 物质成分及性质的探究 化学反应原理的探究 实验方案的设计与评价 定量型综合实验 物质组成、纯度(含量)的测定 核心突破·提能力
考点1 实验仪器的选择与连接顺序
核 心 梳 理
1.仪器的选择
依据实验原理(化学方程式)中反应物及制备物质的状态、用量来选择合适的容器。例如:
(1)固体与固体混合物加热,多采用大试管盛放。
(2)液体与液体加热多采用烧瓶盛放。
(3)固体与液体反应可采用大试管或烧瓶。
(4)反应需要加热的应根据温度的高低选择酒精灯(500 ℃左右)、水浴(小于100 ℃)、酒精喷灯(高温)等条件。
(5)反应物挥发或有副产物生成的需要选择除杂装置,如洗气瓶(除气体杂质)、过滤、蒸发结晶、分液、分馏装置等。
(6)根据制备物质的量选择合适规格的仪器。
2.仪器的连接
实验仪器大多按物质制备→纯化→性质探究或验证→环保处理的顺序装配。
(1)若制备物质为液态时,装置一般按制备(蒸馏烧瓶)→蒸馏(温度计控温)→冷凝(冷凝管)→接收(牛角管、锥形瓶)顺序连接。
(2)若制备物质为气态时,一般按如下思路思考并选择装置连接:
典 题 精 研
考向 实验仪器的选择与连接顺序
例1 化工专家侯德榜发明的侯氏制碱法为我国纯碱工业和国民经济发展做出了重要贡献。某化学兴趣小组在实验室中模拟并改进侯氏制碱法制备NaHCO3,进一步处理得到产品Na2CO3和NH4Cl。实验流程如图:
回答下列问题:
(1)从A~E中选择合适的仪器制备NaHCO3,正确的连接顺序是______(按气流方向,用小写字母表示)。为使A中分液漏斗内的稀盐酸顺利滴下,可将分液漏斗上部的玻璃塞打开或___________________________________________________。
aefbcg
将分液漏斗上部玻璃塞上的凹槽与分液漏斗上端的小孔对齐
(2)B中使用雾化装置的优点是______________________________。
增大接触面积,使反应更充分
解析:(1)制备NaHCO3的具体过程为先制备CO2,再除去杂质HCl,然后将纯净的CO2通入饱和氨盐水中制得NaHCO3,最后用NaOH溶液处理多余的CO2,所以装置的连接顺序为aefbcg。分液漏斗使用前需要让其与大气连通,否则液体无法滴落,所以为使A中分液漏斗内的稀盐酸顺利滴下,需要打开分液漏斗上部的玻璃塞,或者将分液漏斗上部玻璃塞上的凹槽与分液漏斗上端的小孔对齐。(2)雾化装置可以增大接触面积,使饱和氨盐水与CO2充分接触,使反应更充分。
练1 二氧化硫用途广泛,既可用于制造硫酸,又可用于食品的漂白和防腐。
(1)工业上可用煅烧黄铁矿(FeS2)的方法制取SO2,发生反应的化学方
程式为____________________________。
(2)实验室制备并收集干燥的SO2,所需仪器如图。装置A产生SO2,按气流方向连接各仪器接口顺序a→___→_____→___→___→___。
4FeS2+11O22Fe2O3+8SO2
d 
e
c
b
f
解析:(2)实验室用亚硫酸钠和浓硫酸反应制备二氧化硫,用浓硫酸干燥,用向上排空气法收集,用氢氧化钠吸收多余二氧化硫,装置A产生SO2,按气流方向连接各仪器接口顺序a→d→e→c→b→f。
考点2 实验基本操作与条件的控制
核 心 梳 理
1.基本操作的答题规范
基本操作 答题规范
检查装置气密性 微热法:封闭(关闭活塞、导管末端插入盛水的烧杯中等)、微热(双手捂热或用酒精灯稍微加热)、气泡(观察到导管口有气泡逸出)、水柱(移开双手或停止加热,观察到导管中液面上升形成一段稳定的水柱)
液差法:封闭(关闭活塞或用止水夹夹住橡皮管等)、液差(向×××容器中加水,使××和××形成液面差,停止加水,放置一段时间,液面差保持不变)
滴定操作 滴定时,左手控制滴定管活塞,右手振荡锥形瓶,眼睛注视锥形瓶内溶液颜色的变化
证明沉淀完全 静置,取沉淀后的上层清液,加入××试剂(沉淀剂),若没有沉淀生成,说明沉淀完全
洗涤沉淀 沿玻璃棒向过滤器中的沉淀上加蒸馏水至没过沉淀,静置使其全部滤出,重复操作数2至3次
检验沉淀是否洗净 取最后一次洗涤液,加入××试剂(根据沉淀可能吸附的杂质离子,选择合适的检验试剂),若没有××(特征现象)出现,证明沉淀已洗涤干净
降温结晶 蒸发浓缩→冷却结晶→过滤→洗涤(包括水洗、冰水洗、热水洗、乙醇洗等)→干燥
蒸发结晶 将溶液转移到蒸发皿中加热,并用玻璃棒不断搅拌,待有大量晶体出现时停止加热,利用余热蒸干剩余水分
2.操作目的分析角度
常考操作 思维方向 末端放置干燥管 防止空气中的水蒸气或二氧化碳干扰实验 通入N2或惰性气体 实验前 防止可燃气体与空气混合加热爆炸;防止反应物与空气中的O2、CO2反应
实验后 让产生的气体完全排至某一装置被完全吸收
洗涤晶体 ①水洗:通常是为了除去晶体表面水溶性的杂质 ②冰水洗涤:能洗去晶体表面的杂质离子,同时防止晶体在洗涤过程中的溶解损耗 ③用特定有机试剂清洗晶体:洗去晶体表面的杂质,降低晶体的溶解度、有利于析出,减少损耗等 恒压滴液漏斗上的支管的作用 保证反应器(一般为圆底烧瓶)内气压与恒压滴液漏斗内气压相等(平衡气压),使滴液漏斗中的液体易于滴下 冷凝回流的作用及目的 防止××蒸气逸出(脱离反应体系),提高××物质的转化率 3.实验条件控制分析角度
实验条件控制 思维方向 改变试剂、用量 加过量试剂 使反应完全进行(或增大产率、提高另一反应物的转化率)
加氧化剂 (如H2O2) 氧化还原性物质,生成目标产物、除去某种离子
温度控制 加热 加快化学反应速率或使化学平衡向某方向移动
降温 防止某物质在高温时分解或使化学平衡向某方向移动
控制温度范围 若温度过低,则反应速率(或溶解速率)较慢;若温度过高,则某物质(如H2O2、氨水、草酸、浓硝酸、铵盐等)会分解或挥发
水浴加热 受热均匀,温度可控,且温度不超过100 ℃
冰水浴冷却 防止某物质分解或挥发
趁热过滤 保持过滤温度,防止温度降低后某物质析出
减压蒸发(蒸馏) 减压蒸发(蒸馏)降低了温度,可以防止某物质分解
控制溶液pH 分离除杂 抑制水解;使杂质充分沉淀或溶解,提高纯度
调控反应 使溶液呈酸性,提高氧化性,除去氧化物(膜)等,促进氧化还原反应的发生;或使溶液呈碱性,除去油污,除去铝片氧化膜,溶解铝、二氧化硅等;控制水解反应的发生
典 题 精 研
考向 实验基本操作与条件的控制
例2 H2O2作为绿色氧化剂应用广泛,氢醌法制备H2O2原理及装置如下:
已知:H2O、HX等杂质易使Ni催化剂中毒。回答下列问题:
(1)A中反应的离子方程式为______________________。
Zn+2H+===Zn2++H2↑
(2)装置B应为________(填序号)。
(3)检查装置气密性并加入药品,所有活塞处于关闭状态。开始制备时,打开活塞________,控温45 ℃。一段时间后,仅保持活塞b打开,抽出残留气体。随后关闭活塞b,打开活塞________,继续反应一段时间。关闭电源和活塞,过滤三颈烧瓶中混合物,加水萃取,分液,减压蒸馏,得产品。
(4)装置F的作用为_________________________________。
(5)反应过程中,控温45 ℃的原因为
___________________________________________________________。
③①
a、b
c、d
防止外界水蒸气进入C中使催化剂中毒
适当升温加快反应速率,同时防止温度过高H2O2分解
解析:从H2O2的制备原理图可知,反应分两步进行,第一步为H2在Ni催化作用下与乙基蒽醌反应生成乙基蒽醇,第二步为O2与乙基蒽醇反应生成H2O2和乙基蒽醌。启普发生器A为制取H2的装置,产生的H2中混有HCl和H2O,需分别除去后进入C中发生第一步反应。随后氧气源释放的氧气经D干燥后进入C中发生反应生成H2O2和乙基蒽醌,F中装有浓H2SO4,与C相连,防止外界水蒸气进入C中,使催化剂Ni中毒。(2)H2O、HX等杂质易使Ni催化剂中毒,需分别通过装有饱和食盐水和浓H2SO4的洗气瓶除去,所以装置B应该选③①。(3)开始制备时,打开活塞a、b,A中产生的H2进入C中,在Ni催化作用下与乙基蒽醌反应生成乙基蒽醇,一段时间后,关闭a,仅保持活塞b打开,将残留H2抽出,随后关闭活塞b,打开活塞c、d,将O2通入C中与乙基蒽醇反应生成H2O2和乙基蒽醌。(4)H2O容易使Ni催化剂中毒,实验中需要保持C装置为无水环境,F的作用为防止外界水蒸气进入C中。(5)适当升温加快反应速率,同时防止温度过高H2O2分解,所以反应过程中控温45 ℃。
练2 [2023·全国乙卷]元素分析是有机化合物的表征手段之一。按下图实验装置(部分装置略)对有机化合物进行C、H元素分析。
回答下列问题:
(1)将装有样品的Pt坩埚和CuO放入石英管中,先____________,而后将已称重的U型管c、d与石英管连接,检查________。依次点燃煤气灯________,进行实验。
通入一定的O2
装置气密性
b、a
解析:利用如图所示的装置测定有机物中C、H两种元素的含量,这是一种经典的李比希元素测定法,将样品装入Pt坩埚中,后面放置CuO做催化剂,用于催化前置坩埚中反应不完全的物质,后续将产物吹入两U型管中,称量两U型管的增重,计算有机物中C、H两种元素的含量,结合其他技术手段,从而得到有机物的分子式。
(1)实验前,应先通入一定的O2,排尽空石英管中的杂质气体,保证没有其他产物生成,而后将U型管c、d与石英管连接,检查装置气密性,随后先点燃b处酒精灯后点燃a处酒精灯,保证当a处发生反应时产生的CO能与CuO反应生成CO2。
(2)O2的作用有_____________________________________________。
CuO的作用是____________________ (举1例,用化学方程式表示)。
解析:(2)实验中O2的作用有:为实验提供氧化剂、提供气流保证反应产物完全进入到U型管中;CuO的作用是催化a处产生的CO,使CO反应为CO2,反应方程式为CO+CuOCu+CO2。
为实验提供氧化剂、提供气流保证反应产物完全进入到U型管中
CO+CuOCu+CO2
(3)c和d中的试剂分别是____、_____(填标号)。c和d中的试剂不可调换,理由是_______________________________。
A.CaCl2
B.NaCl
C.碱石灰(CaO+NaOH)
D.Na2SO3
(4)Pt坩埚中样品CxHyOz反应完全后,应进行操作:
___________________________________________________________。
取下c和d管称重。
(5)若样品CxHyOz为0.023 6 g,实验结束后,c管增重0.010 8 g,d管增重0.035 2 g。质谱测得该有机物的相对分子量为118,其分子式为________。
A
C
碱石灰可以同时吸收水蒸气和二氧化碳
熄灭a处的煤气灯,继续吹入一定量的O2,然后熄灭b处煤气灯,待石英管冷却至室温,停止通入O2
C4H6O4
解析:(3)有机物燃烧后生成的CO2和H2O分别用碱石灰和无水CaCl2吸收,其中c管装有无水CaCl2,d管装有碱石灰,二者不可调换,因为碱石灰能同时吸收水蒸气和二氧化碳,影响最后分子式的确定;
(4)反应完全以后应继续吹入一定量的O2,保证石英管中的气体产物完全吹入两U型管中;
(5)c管装有无水CaCl2,用来吸收生成的水蒸气,则增重量为水蒸气的质量,由此可以得到有机物中H元素的物质的量n(H)===0.001 2 mol;d管装有碱石灰,用来吸收生成的CO2,则增重量为CO2的质量,由此可以得到有机物中C元素的物质的量n(C)===0.000 8 mol;有机物中O元素的质量为0.012 8 g,其物质的量n(O)===0.000 8 mol;该有机物中C、H、O三种元素的原子个数比为0.000 8∶0.001 2∶0.000 8=2∶3∶2;质谱测得该有机物的相对分子质量为118,则其化学式为C4H6O4。
考点3 实验现象描述及方案设计
核 心 梳 理
1.实验现象描述答题模板
[微点拨] 描述实验现象时要注意语言表达的规范性,同时还要注意不要遗漏现象,要从“海”“陆”“空”三个方面进行检查和思考。
2.实验方案设计的基本思路及原则
(1)基本思路
(2)基本原则
典 题 精 研
考向 实验现象描述及方案设计
例3 硫氰化铵(NH4SCN)可以作为聚合反应和过氧化氢生产的催化剂,某化学实验小组在实验室条件下模拟制备少量样品,常压下的制备原理为CS2+2NH3NH4SCN+H2S。
步骤1:将装置Ⅰ中药品A以恒定的速度滴入装有药品B的烧瓶中,确保有稳定的氨气缓慢通入装置Ⅱ;
步骤2:装置Ⅱ加热至95 ℃,发生反应,观察到装置Ⅱ下层液体逐渐减少,直至近乎消失时停止通入氨气。
该实验小组同学为检验生成的产物,设计了如下实验探究。
(1)取少量Ⅱ中反应后的溶液于试管中,滴加________溶液,振荡,出现________________(填现象),得出结论产物中含有SCN-。
(2)设计实验证明产物中存在:
______________________________________________________________________________________________________简述实验操作及现象)。
FeCl3
溶液变成血红色
取少量Ⅱ中反应后的溶液于试管,滴加适量浓Noah溶液,加热,在试管口放置一张湿润的红色石蕊试纸,红色石蕊试纸变蓝
解析: (1)Fe3+与SCN-反应使溶液变成血红色,可滴加FeCl3溶液验证产物中是否含有SCN-,若有SCN-,则遇到Fe3+溶液会变红。检验时需要将其转化为NH3,然后用湿润的红色石蕊试纸检验是否产生氨气,具体操作为取少量Ⅱ中反应后的溶液于试管,滴加适量浓NaOH溶液,加热,在试管口放置一张湿润的红色石蕊试纸,红色石蕊试纸变蓝。
练3 亚硝酸钠(NaNO2)是一种常见的食品添加剂。某实验小组制备NaNO2并对其性质进行探究。
资料:Ag+与反应,可生成AgNO2白色沉淀或无色配离子。
Ⅰ.NaNO2的制取(夹持装置略)
实验ⅰ
向装置A中通入一段时间N2,再通入NO和NO2混合气体,待Na2CO3反应完全后,将所得溶液经系列操作,得到NaNO2白色固体。
(1)制取NaNO2的离子方程式是________________________________。
(2)小组成员推测HNO2是弱酸。为证实推测,向NaNO2溶液中加入试剂X,“实验现象”证实该推测合理,加入的试剂及现象分别是
__________________________________________________________。
+CO2
无色酚酞溶液,NaNO2溶液变成浅红色
Ⅱ.NaNO2性质探究
将实验ⅰ制取的NaNO2固体配制成约0.1 mol·L-1 NaNO2溶液,进行实验ⅱ和ⅲ。
实验ⅱ
(3)由实验ⅱ的现象得出结论:白色沉淀的生成与______________________________有关。
(4)仅用实验ⅱ的试剂,设计不同实验方案进一步证实了上述结论,实验操作及现象是________________________________________。
AgNO3溶液和NaNO2溶液的相对用量
向AgNO3溶液中逐滴滴加NaNO2溶液,先有白色沉淀生成,后沉淀逐渐溶解
实验ⅲ
(5)酸性条件下氧化I-的离子方程式是
____________________________________。
(6)甲同学认为,依据实验ⅲ的现象可以得出结论:该条件下能氧化I-。乙同学则认为A装置中制取的NaNO2含有副产物,仅凭实验ⅲ不能得出上述结论,还需要补充实验ⅳ进行验证,乙同学设计实验ⅳ证明了实验ⅲ条件下氧化I-的只有,实验ⅳ的实验方案是________________________________________________________。
+2I-+4H+===2NO↑+I2+2H2O
取2 mL 0.1 mol·L-1 NaNO3溶液于试管中,加2 mL 0.1 mol·L-1 KI溶液(含淀粉),再滴加三滴1 mol·L-1硫酸溶液,溶液没有变蓝
解析:由实验装置图可知,制备亚硝酸钠时,先向盛有碳酸钠溶液的三颈烧瓶中通入一段时间氮气,排尽装置中的空气后,再通入一氧化氮和二氧化氮混合气体,一氧化氮和二氧化氮在碳酸钠溶液中反应生成亚硝酸钠和二氧化碳,盛有酸性高锰酸钾溶液的洗气瓶用于吸收一氧化氮,防止污染空气。(1)由分析可知,一氧化氮和二氧化氮在碳酸钠溶液中反应生成亚硝酸钠和二氧化碳,反应的离子方程式为+CO2。(2)若亚硝酸为弱酸,亚硝酸钠会在溶液中水解使溶液呈碱性,则向亚硝酸钠溶液中滴加酚酞溶液,若溶液会变成浅红色,说明亚硝酸为弱酸。(3)由实验现象可知,向NaNO2溶液中滴加AgNO3溶液时,先没有白色沉淀生成,后有白色沉淀生成,说明白色沉淀的生成与AgNO3溶液和NaNO2溶液的相对用量有关。(4)由实验现象可知,向NaNO2溶液中滴加AgNO3溶液时,先没有白色沉淀生成,后有白色沉淀生成,则向AgNO3溶液中滴加NaNO2溶液时,先有白色沉淀生成,后沉淀逐渐溶解说明白色沉淀的生成与AgNO3溶液和NaNO2溶液的相对用量有关。
(5)由实验现象可知,向亚硝酸钠溶液中滴加含淀粉的碘化钾溶液,无明显现象,滴加稀硫酸后,溶液变蓝色,有无色气体生成,说明酸性条件下,亚硝酸钠溶液与碘化钾溶液发生氧化还原反应生成硫酸钠、硫酸钾、碘、一氧化氮和水,反应的离子方程式为+2I-+4H+===2NO↑+I2+2H2O。(6)由题意可知,一氧化氮和二氧化氮在碳酸钠溶液中反应生成亚硝酸钠和二氧化碳时,可能生成硝酸钠,则设计酸性条件下,硝酸钠溶液与碘化钾溶液反应没有碘生成的实验,可以说明酸性条件下,只有亚硝酸钠溶液与碘化钾溶液发生氧化还原反应,故可以进行以下操作:取2 mL 0.1 mol·L-1 NaNO3溶液于试管中,加 KI溶液(含淀粉),再滴加三滴1 mol·L-1硫酸溶液,溶液没有变蓝。
考点4 定量实验数据测定与计算
核 心 梳 理
1.定量实验数据的测定方法
(1)沉淀法
先将某种成分转化为沉淀,然后称量纯净、干燥的沉淀的质量,再进行相关计算。
(2)测气体体积法
对于产生气体的反应,可以通过测定气体体积的方法测定样品纯度。
①常见测量气体体积的实验装置
②量气时应注意的问题
a.量气时应保持装置处于室温状态。
b.读数时要特别注意消除“压强差”,保持液面相平还要注意视线与液面最低处相平。如上图(Ⅰ)(Ⅳ)应使左侧和右侧的液面高度保持相平。
(3)测气体质量法
将生成的气体通入足量的吸收剂中,通过称量实验前后吸收剂的质量,求得所吸收气体的质量,然后进行相关计算。
(4)滴定法
即利用滴定操作原理,通过酸碱中和滴定、沉淀滴定和氧化还原反应滴定等获得相应数据后再进行相关计算。
①仪器及使用
②指示剂的选择
a.变色范围与滴定终点的pH吻合或接近,若滴定终点为酸性,一般选用甲基橙,若滴定终点为碱性,一般选用酚酞。
b.氧化还原滴定中可根据物质具有的颜色或特性选择特殊判断滴定终点的方法。
③终点判断:滴入最后一滴××溶液后,锥形瓶内颜色发生突变,半分钟内不恢复原色。
2.常用计算方法
(1)关系式法
多步反应是多个反应连续发生,各反应物、生成物之间存在确定的物质的量的关系,根据有关反应物、生成物之间物质的量的关系,找出已知物与所求物间的数量关系;列比例式求解,能简化计算过程。
(2)守恒法
所谓“守恒”就是物质在发生“变化”或两物质在发生“相互作用”的过程中,某些物理量的总量保持“不变”。在化学变化中有各种各样的守恒,如质量守恒、原子守恒、得失电子守恒、电荷守恒等。根据守恒关系可列等式求解。
典 题 精 研
考向 定量实验数据测定与计算
例4 利用碘量法测定WCl6产品纯度,实验如下:
①称量:将足量CS2(易挥发)加入干燥的称量瓶中,盖紧称重为m1 g;开盖并计时1分钟,盖紧称重为m2 g;再开盖加入待测样品并计时1分钟,盖紧称重为m3 g,则样品质量为________________g(不考虑空气中水蒸气的干扰)。
m3+m1-2m2
②滴定:先将WCl6转化为可溶的Na2WO4,通过离子交换柱发生反应:+Ba(IO3)2===BaWO4+;交换结束后,向所得含的溶液中加入适量酸化的KI溶液,发生反应:+5I-+6H+===3I2+3H2O;反应完全后,用Na2S2O3标准溶液滴定,发生反应:I2+===2I-+S4。滴定达终点时消耗的Na2S2O3溶液V mL,则样品中WCl6(摩尔质量为M g·mol-1)的质量分数为
____________________。称量时,若加入待测样品后,开盖时间超过1分钟,则滴定时消耗Na2S2O3溶液的体积将________(填“偏大”“偏小”或“不变”),样品中WCl6质量分数的测定值将________(填“偏大”“偏小”或“不变”)。
%
不变
偏大
解析:①根据分析,称量时加入足量的CS2,盖紧称重为m1 g,由于CS2易挥发,开盖时要挥发出来,称量的质量要减少,开盖并计时1分钟,盖紧称重m2 g,则挥发出的CS2的质量为(m1-m2) g,再开盖加入待测样品并计时1分钟,又挥发出(m1-m2) g的CS2,盖紧称重为m3 g,则样品质量为:m3 g+2(m1-m2) g-m1 g=(m3+m1-2m2) g;②滴定时,根据关系式:~6I2~12S2,样品中n(WCl6)=)=)= cV×10-3 mol,m(WCl6)=cV×10-3mol×M g·mol-1=g,则样品中WCl6的质量分数为:×100%=%;根据测定原理,称量时,若加入待测样品后,开盖时间超过1分钟,挥发的CS2的质量增大,m3偏小,但WCl6的质量不变,则滴定时消耗Na2S2O3溶液的体积将不变,样品中WCl6质量分数的测定值将偏大。
练4 [2023·湖北卷]学习小组探究了铜的氧化过程及铜的氧化物的组成。回答下列问题:
(1)铜与浓硝酸反应的装置如下图,仪器A的名称为________,装置B的作用为________。
具支试管
防倒吸
(2)铜与过量H2O2反应的探究如下:
实验②中Cu溶解的离子方程式为____________________________;产生的气体为________。比较实验①和②,从氧化还原角度说明H+的作用是______________________________。
Cu+H2O2+2H+=== Cu2++2H2O
O2
增强H2O2的氧化性
(3)用足量NaOH处理实验②新制的溶液得到沉淀X,元素分析表明X为铜的氧化物,提纯干燥后的X在惰性氛围下加热,m g X完全分解为n g黑色氧化物Y,=。X的化学式为________。
(4)取含X粗品0.050 0 g(杂质不参加反应)与过量的酸性KI完全反应后,调节溶液至弱酸性。以淀粉为指示剂,用0.100 0 mol·L-1Na2S2O3标准溶液滴定,滴定终点时消耗Na2S2O3标准溶液15.00 mL。(已知:2Cu2++4I-===2CuI↓+I2,I2+===2I-+S4)标志滴定终点的现象是_________________________________,粗品中X的相对含量为________。
CuO2
溶液蓝色消失,且半分钟不恢复原来的颜色
96.0%
解析:(1)由图可知,仪器A的名称为具支试管;铜和浓硝酸反应生成硝酸铜和二氧化氮,其中二氧化氮易溶于水,需要防倒吸,则装置B的作用为防倒吸;
(2)根据实验现象,铜片溶解,溶液变蓝,可知在酸性条件下铜和过氧化氢发生反应,生成硫酸铜,离子方程式为:Cu+H2O2+2H+=== Cu2++2H2O;硫酸铜可以催化过氧化氢分解生成氧气,则产生的气体为O2;在Na2SO4溶液中H2O2不能氧化Cu,在稀H2SO4中能氧化,说明H+使H2O2的氧化性增强;
(3)在该反应中铜的质量m(Cu)=n×=,因为=,则m(O)=n×+(m-n)=,则X的化学式中铜原子和氧原子的物质的量之比为:==,则X为CuO2;
(4)CuO2在酸性条件下生成Cu2+,Cu2+与KI反应生成I2,I2遇淀粉变蓝,用Na2S2O3标准溶液滴定I2,当滴入最后半滴Na2S2O3标准溶液时,溶液的蓝色褪去,且半分钟内不恢复时,表明I2已完全反应,达到滴定终点。CuO2中Cu为+2价,O为-1价,结合已知反应可知,CuO2在酸性条件下与KI发生反应2CuO2+8I-+8H+===2CuI↓+3I2+4H2O,则2CuO2~3I2~6Na2S2O3,则样品中m(CuO2)=×2×96 g=0.048 g,w(CuO2)=×100%=96%。
模考精练·抓落实
1.某研究小组用铝土矿为原料制备絮凝剂聚合氯化铝([Al2(OH)aClb]m,a=1~5)按如下流程开展实验。
已知:①铝土矿主要成分为Al2O3,含少量Fe2O3和SiO2。用NaOH溶液溶解铝土矿过程中SiO2转变为难溶性的铝硅酸盐。
②[Al2(OH)aClb]m的絮凝效果可用盐基度衡量,盐基度=,当盐基度为0.60~0.85时,絮凝效果较好。
请回答:
(1)步骤Ⅰ所得滤液中主要溶质的化学式是________。
(2)下列说法不正确的是________。
A.步骤Ⅰ,反应需在密闭耐高压容器中进行,以实现所需反应温度
B.步骤Ⅱ,滤液浓度较大时通入过量CO2有利于减少Al(OH)3沉淀中的杂质
C.步骤Ⅲ,为减少Al(OH)3吸附的杂质,洗涤时需对漏斗中的沉淀充分搅拌
D.步骤Ⅳ中控制Al(OH)3和AlCl3的投料比可控制产品盐基度
NaAlO2
C
(3)步骤Ⅴ采用如图所示的蒸汽浴加热,仪器A的名称是________;步骤Ⅴ不宜用酒精灯直接加热的原因是
___________________________________________________________。
蒸发皿
酒精灯直接加热受热不均匀,会导致产品盐基度不均匀
(4)测定产品的盐基度。
Cl-的定量测定:称取一定量样品,配成溶液,移取25.00 mL溶液于锥形瓶中,调pH=6.5~10.5,滴加指示剂K2CrO4溶液。在不断摇动下,用0.100 0 mol·L-1 AgNO3标准溶液滴定至浅红色(有Ag2CrO4沉淀),30秒内不褪色。平行测试3次,平均消耗AgNO3标准溶液22.50 mL。另测得上述样品溶液中c(Al3+)=0.100 0 mol·L-1。
①产品的盐基度为________。
②测定Cl-过程中溶液pH过低或过高均会影响测定结果,原因是
__________________________________________________________。
0.7
pH过低,指示剂会与氢离子反应生成重铬酸根,会氧化氯离子,导致消耗的硝酸银偏少,而pH过高,氢氧根会与银离子反应,导致消耗的硝酸银偏多
解析:铝土矿主要成分为Al2O3,含少量Fe2O3和SiO2,向铝土矿中加氢氧化钠溶液,得到难溶性铝硅酸盐、偏铝酸钠,氧化铁不与氢氧化钠溶液反应,过滤,滤液中主要含偏铝酸钠,向偏铝酸钠溶液中通入二氧化碳,过滤,得到氢氧化铝沉淀,分为两份,一份加入盐酸得到氯化铝,将两份混合得到聚合氯化铝溶液,加热得到聚合氯化铝固体。
(1)根据题中信息步骤Ⅰ所得滤液中主要溶质的化学式是NaAlO2。(2)步骤Ⅰ,反应所学温度高于100 ℃,因此反应需在密闭耐高压容器中进行,以实现所需反应温度,故A正确;步骤Ⅱ,滤液浓度较大时通入过量CO2生成氢氧化铝和碳酸氢钠溶液,有利于减少Al(OH)3沉淀中的杂质,故B正确;步骤Ⅲ,洗涤时不需对漏斗中的沉淀充分搅拌,故C错误;[Al2(OH)aClb]m中a、b可通过控制Al(OH)3和AlCl3的投料比来控制产品盐基度,故D正确。
2.2 噻吩乙醇(Mr=128)是抗血栓药物氯吡格雷的重要中间体,其制备方法如下:
Ⅰ.制钠砂。向烧瓶中加入300 mL液体A和4.60 g金属钠,加热至钠熔化后,盖紧塞子,振荡至大量微小钠珠出现。
Ⅱ.制噻吩钠。降温至10 ℃,加入25 mL噻吩,反应至钠砂消失。
Ⅲ.制噻吩乙醇钠。降温至-10 ℃,加入稍过量的环氧乙烷的四氢呋喃溶液,反应30 min。
Ⅳ.水解。恢复室温,加入70 mL水,搅拌30 min;加盐酸调pH至4~6,继续反应2 h,分液;用水洗涤有机相,二次分液。
Ⅴ.分离。向有机相中加入无水MgSO4,静置,过滤,对滤液进行蒸馏,蒸出四氢呋喃、噻吩和液体A后,得到产品17.92 g。
回答下列问题:
(1)步骤Ⅰ中液体A可以选择________。
a.乙醇 b.水
c.甲苯 d.液氨
(2)噻吩沸点低于吡咯( )的原因是
______________________________________________________。
(3)步骤Ⅱ的化学方程式为
__________________________________________________________。
c
(4)步骤Ⅲ中反应放热,为防止温度过高引发副反应,加入环氧乙烷溶液的方法是______________________________________________。
(5)步骤Ⅳ中用盐酸调节pH的目的是
_______________________________________________________。
(6)下列仪器在步骤Ⅴ中无需使用的是__________________(填名称);
无水MgSO4的作用为________。
(7)产品的产率为________(用Na计算,精确至0.1%)。
将环氧乙烷溶液沿烧瓶壁缓缓加入,此过程中不断用玻璃棒进行搅拌来散热
将NaOH中和,使平衡正向移动,增大反应物的转化率
球形冷凝管和分液漏斗
除去水
70.0%
(4)步骤Ⅲ中反应放热,为防止温度过高引发副反应,加入环氧乙烷溶液的方法是:将环氧乙烷溶液沿烧瓶壁缓缓加入,此过程中不断用玻璃棒进行搅拌来散热。
(5)2 噻吩乙醇钠水解生成2 噻吩乙醇的过程中有NaOH生成,用盐酸调节pH的目的是将NaOH中和,使平衡正向移动,增大反应物的转化率。
(6)步骤Ⅴ中的操作有过滤、蒸馏,过滤需用到漏斗、玻璃棒、烧杯,蒸馏的过程中需要直形冷凝管不能用球形冷凝管,无需使用的是球形冷凝管和分液漏斗;向有机相中加入无水MgSO4的作用是:除去水。
(7)步骤Ⅰ中向烧瓶中加入300 mL液体A和4.60 g金属钠,Na的物质的量为=0.2 mol,步骤Ⅱ中Na完全反应,根据方程式可知,理论上可以生成0.2 mol 2 噻吩乙醇,产品的产率为×100%=70.0%。
3.三氯化铬(CrCl3)是常用的媒染剂和催化剂,易潮解,易升华,高温下易被氧气氧化。实验室制取CrCl3的反应为:Cr2O3(s)+3CCl4(g)2CrCl3(s)+3COCl2(g),其实验装置如下图所示:
已知:①COCl2(俗称光气)有毒,遇水发生水解:COCl2+H2O===CO2+2HCl;
②碱性条件下,H2O2可将Cr3+氧化为(黄色);酸性条件下,H2O2将 (橙色)还原为Cr3+(绿色)。
(1)A装置用于干燥N2和观察其流速,A中的试剂是________;无水CaCl2的作用是_________________________;反应结束后要继续通入一段时间氮气,主要目的是__________________________________。
(2)装置E用来收集产物。实验过程中若D处因发生凝华出现堵塞,A装置中可观察到的现象是_____________;可通过______________(填操作)使实验继续进行。
(3)尾气与装置G中过量的NaOH溶液发生反应的离子方程式是________________________________________________________。
浓H2SO4
防止G中水蒸气进入E及C装置
将CrCl3和COCl2分别充分排入装置E和G中
导管内液面上升
对D处稍加热
+2Cl-+2H2O
(4)测定产品中CrCl3,质量分数的实验步骤如下:
Ⅰ.取2.0 g CrCl3产品,在强碱性条件下,加入过量30% H2O2溶液,小火加热使CrCl3完全转化为,再继续加热一段时间。
Ⅱ.冷却后加适量的蒸馏水,再滴入适量的稀硫酸和浓磷酸(浓磷酸作用是防止指示剂提前变色),使转化为。
Ⅲ.在溶液中加入适量浓H2SO4混合均匀,滴入3滴试亚铁灵做指示剂,用新配制的1.0 mol·L-1(NH4)2Fe(SO4)2标准溶液滴定,溶液由黄色经蓝绿色至红褐色即为终点,消耗(NH4)2Fe(SO4)2标准溶液30.00 mL(滴定中被Fe2+还原为Cr3+)。
①计算产品中CrCl3质量分数为________。
②下列操作将导致产品中CrCl3质量分数测定值偏低的是________(填字母标号)。
A.步骤Ⅰ中未继续加热一段时间
B.步骤Ⅱ用盐酸替代硫酸
C.步骤Ⅲ中(NH4)2Fe(SO4)2溶液部分变质
D.步骤Ⅲ中读数时,滴定前俯视,滴定后平视
79.25%
AB
解析:(1)实验室制取CrCl3的反应为Cr2O3(s)+3CCl4(g)2CrCl3(s)+3COCl2(g),CrCl3 易潮解,高温下易被氧气氧化,所以要防止装置内在高温条件下不能存在空气,反应结束后继续通入一段时间氮气,让CrCl3在氮气氛围中冷却,防止空气进入使CrCl3氧化,A中装浓H2SO4干燥N2并防止空气中水蒸气进入C装置;无水CaCl2防止G中水蒸气进入E及C装置;反应结束后继续通入一段时间氮气,将CrCl3充分排入装置E,将COCl2排入装置G中并被充分吸收,回收尾气;(2)若D处出现堵塞,则C装置内压强增大,A中导管内液面上升; D处堵塞是因CrCl3升华后在D处凝聚而产生的,故可对D处稍加热,使实验能继续进行;(3)装置G中可以看做是COCl2先与水反应生成二氧化碳和氯化氢,二氧化碳和氯化氢再与氢氧化钠反应,根据电荷守恒和原子守恒,可得反应的离子方程式为: + 2Cl-+2H2O;(4)①根据得失电子守恒和原子守恒可得测定过程中的物质的量的关系为:~6(NH4)2Fe(SO4)2,(NH4)2Fe(SO4)2的物质的量:n=cV=30.00×10-3L×1.0 mol·L-1=3×10-2mol,测定产品中CrCl3质量分数为:=79.25%;
②A项,步骤Ⅰ未继续加热一段时间,过量的H2O2在步骤Ⅰ中会将还原为Cr3+,则滴定时消耗标准溶液(NH)4Fe(SO4)2体积减小,测定的CrCl3质量分数偏低;B项,步骤Ⅱ中用盐酸代替硫酸,由于Cl-具有还原性,会反应消耗,导致(NH)4Fe(SO4)2消耗的体积偏小,读取标准液体积小于实际,测出的CrCl3质量分数偏低;C项,步骤Ⅰ中(NH)4Fe(SO4)2已变质,则滴定用标准液体积偏大,测出的CrCl3质量分数偏高;D项,步骤中读数时,滴定前俯视(读数偏小),滴定后平视,读取标准液的体积偏大,测出的CrCl3质量分数偏高。
4.二氯异氰尿酸钠(NaC3N3O3Cl2)是一种高效广谱杀菌消毒剂,它常温下为白色固体,难溶于冷水。其制备原理为:2NaClO+C3H3N3O3 NaC3N3O3Cl2+NaOH+H2O。请选择下列部分装置制备二氯异氰尿酸钠并探究其性质。
请回答下列问题:
(1)仪器X的名称是________。
(2)装置B的作用是____________________________________。
(3)D中发生反应的化学方程式为
________________________________________________。
(4)选择合适装置,按气流从左至右,导管连接顺序为________(填字母)。
(5)实验时,先向A中通入氯气,生成高浓度的NaClO溶液后,再加入氰尿酸溶液,并在整个过程中不断通入一定量的氯气,其原因是
_____________________________________________________。
(6)反应结束后,A中浊液经过滤、________、________得到粗产品m g。
三颈烧瓶
除去氯气中的氯化氢
Ca(ClO)2+4HCl(浓)===CaCl2+2Cl2↑+2H2O
fcdabe
通入Cl2与生成的NaOH反应,有利于NaC3N3O3Cl2的生成
冷水洗涤
干燥
(7)粗产品中NaC3N3O3Cl2含量测定。将m g粗产品溶于无氧蒸馏水中配制成100 mL溶液,取20.00 mL所配制溶液于碘量瓶中,加入适量稀硫酸和过量KI溶液,密封在暗处静置5 min。用c mol·L-1Na2S2O3标准溶液进行滴定,加入指示剂,滴定至终点,消耗V mL Na2S2O3溶液。(假设杂质不与KI反应,涉及的反应为:===2I-+S4)
①加入的指示剂是________。
②则NaC3N3O3Cl2的百分含量为________%。(用含m、c、V的代数式表示)
淀粉溶液
解析:由实验装置图可知,装置D中次氯酸钙与浓盐酸反应制备氯气,浓盐酸具有挥发性,制得的氯气中混有氯化氢和水蒸气,装置B中盛有的饱和食盐水用于除去氯化氢气体,装置A中氯气与氢氧化钠溶液、氰尿酸溶液反应制备二氯异氰尿酸钠,氯气与装置C中盛有的氢氧化钠溶液用于吸收未反应的氯气,防止污染空气,则装置的连接顺序为DBAC,导管连接顺序为fcdabe。(5)整个过程中不断通入一定量的氯气,能与反应生成的氢氧化钠溶液反应,减少生成物的浓度,平衡向正反应方向移动,有利于二氯异氰尿酸钠的生成;(6)反应结束后,A中浊液经过滤、冷水洗涤、干燥得到二氯异氰尿酸钠;(7)①滴定终点时,I2完全反应,滴定时应选择淀粉溶液做指示剂;②由涉及的反应方程式可得如下转化关系:,由滴定消耗V mL c mol·L-1硫代硫酸钠溶液可知,m g样品中二氯异氰尿酸钠的物质的量为c mol·L-1×V×10-3 L ×=×10-3 mol,则样品的纯度为×100%=%。
5.苯甲酸乙酯(C9H10O2)(Mr=150;密度为1.05 g·cm-3)稍有水果气味,用于配制香水香精和人造精油;也大量用于食品中,也可用作有机合成中间体、溶剂如纤维素酯、纤维素醚、树脂等。可能用到的数据:
其制备原理为:
沸点(℃,1 atm) 苯甲酸 苯甲酸乙酯 石油醚 水 乙醇 环己烷 共沸物(环己烷—水—乙醇)
249 212.6 40~80 100 78.3 80.75 62.6
制备过程:
Ⅰ.制备粗产品:
如图所示的装置中,于50 mL圆底烧瓶中加入8.0 g苯甲酸(固体)(Mr=122)、20 mL乙醇(Mr=46)、15 mL环己烷、3 mL浓硫酸,摇匀,加沸石。在分水器上加水至c处,接通冷凝水,水浴回流约2 h,反应基本完成。记录体积,继续蒸出多余的环己烷和乙醇(从分水器中放出)。
Ⅱ.粗产品的纯化:加水30 mL,分批加入固体NaHCO3。分液,水层用20 mL石油醚分两次萃取。合并有机层,用无水硫酸镁干燥。回收石油醚,加热精馏,收集210~213 ℃馏分。
(1)仪器d的名称__________,水流方向为_____进________出。
(2)该反应水浴控制的温度为______________________。
(3)该反应加过量乙醇的目的为
___________________________________________________________。
(4)分水器的作用:_________________________________________,
分水器的检漏方法?
如何利用实验现象判断反应已基本完成____________________。
球形冷凝管
a
b
略高于62.6 ℃
乙醇相对廉价,增大反应物浓度,使平衡向正反应方向移动,提高苯甲酸的转化率,提高产率;形成共沸物需要添加乙醇
分离产生的水,使平衡向正反应方向移动,提高转化率
关闭活塞,在分水器中加适量的水,观察是否漏水,若不漏水,旋转活塞180°,若仍不漏水,说明分水器不漏水
加热回流至分水器中水位不再上升为止(共98张PPT)
专题十三 化学反应原理综合考查
真题研练·析考情
核心突破·提能力
模考精练·抓落实
真题研练·析考情
1.[2023·湖南卷]聚苯乙烯是一类重要的高分子材料,可通过苯乙烯聚合制得。
Ⅰ.苯乙烯的制备
(1)已知下列反应的热化学方程式:
①C6H5C2H5(g)+O2(g)===8CO2(g)+5H2O(g)
ΔH1=-4 386.9 kJ·mol-1
②C6H5CH===CH2(g)+10O2(g)===8CO2(g)+4H2O(g) ΔH2=-4 263.1 kJ·mol-1
③H2(g)+O2(g)===H2O(g)ΔH3=-241.8 kJ·mol-1
计算反应④C6H5C2H5(g) C6H5CH===CH2(g)+H2(g)
的ΔH4=________ kJ·mol-1;
+118 
解析:(1)根据盖斯定律,由①-②-③,可得④C6H5C2H5(g) C6H5CH===CH2(g)+H2(g) ΔH4=-4 386.9 kJ·mol-1-(-4 263.1 kJ·mol-1)-(-241.8 kJ·mol-1)=+118 kJ·mol-1。
(2)在某温度、100 kPa下,向反应器中充入1 mol气态乙苯发生反应④,其平衡转化率为50%,欲将平衡转化率提高至75 %,需要向反应器中充入________ mol水蒸气作为稀释气(计算时忽略副反应);
5 
解析:乙苯的平衡转化率为50%时,由题中信息可得:
     C6H5C2H5(g) C6H5CH===CH2(g)+H2(g)
起始量 1 mol 0 0
转化量 0.5 mol 0.5 mol 0.5 mol
平衡量 0.5 mol 0.5 mol 0.5 mol
平衡分压 kPa kPa kPa
则压强平衡常数Kp= = kPa。设充入x mol水蒸气时乙苯平衡转化率提高到75%,则:
     C6H5C2H5(g) C6H5CH===CH2(g)+H2(g)
起始量 1 mol 0 0
转化量 0.75 mol 0.75 mol 0.75 mol
平衡量 0.25 mol 0.75 mol 0.75 mol
平衡分压 kPa kPa kPa
温度不变,平衡常数不变,则压强平衡常数Kp== kPa= kPa,解得x=5。
(3)在913 K、100 kPa下,以水蒸气作稀释气、Fe2O3作催化剂,乙苯除脱氢生成苯乙烯外,还会发生如下两个副反应:
⑤C6H5C2H5(g) C6H6(g)+CH2===CH2(g)
⑥C6H5C2H5(g)+H2(g) C6H5CH3(g)+CH4(g)
以上反应体系中,芳香烃产物苯乙烯、苯和甲苯的
选择性S(S=×100%)
随乙苯转化率的变化曲线如图所示,其中曲线b代表的
产物是______,
理由是______________________________________________________________;
甲苯
主反应生成的氢气能使副反应⑥的平衡正向移动,甲苯的选择性大于苯的选择性
解析:生成苯乙烯的反应为主反应,则苯乙烯的选择性最高,主反应生成的氢气能使副反应⑥的平衡正向移动,则甲苯的选择性大于苯的选择性,故b代表的产物为甲苯。
(4)关于本反应体系中催化剂Fe2O3的描述错误的是________;
A.X射线衍射技术可测定Fe2O3晶体结构
B.Fe2O3可改变乙苯平衡转化率
C.Fe2O3降低了乙苯脱氢反应的活化能
D.改变Fe2O3颗粒大小不影响反应速率
答案: BD 
解析:X射线衍射技术可以测定晶体结构,A项正确;Fe2O3是催化剂,催化剂不能使平衡发生移动,不能改变乙苯平衡转化率,B项错误;Fe2O3作催化剂,可以降低乙苯脱氢反应的活化能,C项正确;改变Fe2O3颗粒大小即改变催化剂的表面积,可以改变反应速率,D项错误。
Ⅱ.苯乙烯的聚合
苯乙烯聚合有多种方法,其中一种方法的关键步骤是某Cu(Ⅰ)的配合物促进C6H5CH2X(引发剂,X表示卤素)生成自由基 实现苯乙烯可控聚合。
(5)引发剂C6H5CH2Cl、C6H5CH2Br、C6H5CH2I中活性最高的是________;
(6)室温下,①Cu+在配体L的水溶液中形成,其反应平衡常数为K;
②CuBr在水中的溶度积常数为Ksp。由此可知,CuBr在配体L的水溶液中溶解反应的平衡常数为________(所有方程式中计量系数关系均为最简整数比)。
C6H5CH2Cl 
K×Ksp
解析:(5)电负性:Cl>Br>I,C—Cl键的极性更大,更易断裂,故C6H5CH2Cl更易生成自由基C6H5C*,H2,活性最强。
解析:(6)已知Cu+(aq)+2L [Cu(L)2]+ K、CuBr(s) Cu+(aq)+Br-(aq) Ksp,两反应相加可得:CuBr(s)+2L [Cu(L)2]++Br-(aq),则其平衡常数为K×Ksp。
2.[2023·辽宁卷]硫酸工业在国民经济中占有重要地位。
(1)我国古籍记载了硫酸的制备方法——“炼石胆(CuSO4·5H2O)取精华法”。借助现代仪器分析,该制备过程中CuSO4·5H2O分解的TG曲线(热重)及DSC曲线(反映体系热量变化情况,数值已省略)如下图所示。700 ℃左右有两个吸热峰,则此时分解生成的氧化物有SO2、________和________(填化学式)。
CuO
SO3
解析:根据图示的热重曲线所示,在700 ℃左右会出现两个吸热峰,说明此时CuSO4发生热分解反应,从TG图像可以看出,质量减少量为原CuSO4质量的一半,说明有固体CuO剩余,还有其他气体产生,此时气体产物为SO2、SO3、O2,可能出现的化学方程式为3CuSO43CuO+2SO2↑+SO3↑+O2↑,结合反应中产物的固体产物质量和气体产物质量可以确定,该反应的产物为CuO、SO2、SO3、O2,故答案为CuO、SO3。
(2)铅室法使用了大容积铅室制备硫酸(76%以下),副产物为亚硝基硫酸,主要反应如下:
NO2+SO2+H2O===NO+H2SO4
2NO+O2===2NO2
(ⅰ)上述过程中NO2的作用为________。
(ⅱ)为了适应化工生产的需求,铅室法最终被接触法所代替,其主要原因是
_____________________________________________________________________________________________________________(答出两点即可)。
催化剂
反应中有污染空气的NO和NO2放出影响空气环境、NO2可以溶解在硫酸中给产物硫酸带来杂质、产率不高(答案合理即可)
解析: (ⅰ)根据所给的反应方程式,NO2在反应过程中先消耗再生成,说明NO2在反应中起催化剂的作用;
(ⅱ)近年来,铅室法被接触法代替是因为在反应中有污染空气的NO和NO2放出影响空气环境,同时作为催化剂的NO2可以溶解在硫酸中给产物硫酸带来杂质,影响产品质量,产率不高(答案合理即可)。
(3)接触法制硫酸的关键反应为SO2的催化氧化:
SO2(g)+O2(g) SO3(g) ΔH=-98.9 kJ·mol-1
(ⅰ)为寻求固定投料比下不同反应阶段的最佳生产温度,绘制相应转化率(α)下反应速率(数值已略去)与温度的关系如下图所示,下列说法正确的是________。
a.温度越高,反应速率越大
b.α=0.88的曲线代表平衡转化率
c.α越大,反应速率最大值对应温度越低
d.可根据不同α下的最大速率,选择最佳
生产温度
cd
解析:根据不同转化率下的反应速率曲线可以看出,随着温度的升高反应速率先加快后减慢,a错误;从图中所给出的速率曲线可以看出,相同温度下,转化率越低反应速率越快,但在转化率小于88%时的反应速率图像并没有给出,无法判断α=0.88的条件下是否是平衡转化率,b错误;从图像可以看出随着转化率的增大,最大反应速率不断减小,最大反应速率出现的温度也逐渐降低,c正确;从图像可以看出随着转化率的增大,最大反应速率出现的温度也逐渐降低,这时可以根据不同转化率选择合适的反应温度以减少能源的消耗,d正确;故答案选cd;
(ⅱ)为提高钒催化剂的综合性能,我国科学家对其进行了改良。不同催化剂下,温度和转化率关系如下图所示,催化性能最佳的是________(填标号)。
d
解析:为了提高催化剂的综合性能,科学家对催化剂进行了改良,从图中可以看出标号为d的催化剂V K Cs Ce对SO2的转化率最好,产率最佳,故答案选d;
(ⅲ)设O2的平衡分压为p,SO2的平衡转化率为αe,用含p和αe的代数
式表示上述催化氧化反应的Kp=________(用平衡分压代替平衡浓度计算)。
解析:利用分压代替浓度计算平衡常数,反应的平衡常数Kp===;设SO2初始量为m mol,则平衡时n(SO2)=m(1-αe),n(SO3)=m·αe,Kp==,故答案为。
3.[2023·浙江6月]水煤气变换反应是工业上的重要反应,可用于制氢。
水煤气变换反应:CO(g)+H2O(g) CO2(g)+H2(g) ΔH=-41.2 kJ·mol-1
该反应分两步完成:
3Fe2O3(s)+CO(g) 2Fe3O4(s)+CO2(g) ΔH1=-47.2 kJ·mol-1
2Fe3O4(s)+H2O(g) 3Fe2O3(s)+H2(g) ΔH2
请回答:
(1)ΔH2=________ kJ·mol-1。
+6 
解析:设方程式①CO(g)+H2O(g) CO2(g)+H2(g) ΔH=-41.2 kJ·mol-1
②3Fe2O3(s)+CO(g) 2Fe3O4(s)+CO2(g) ΔH1=
③2Fe3O4(s)+H2O(g) 3Fe2O3(s)+H2(g) ΔH2
根据盖斯定律可知,③=①-②,则ΔH2=ΔH-ΔH1=(-41.2 kJ·mol-1)-(-47.2 kJ·mol-1)=6 kJ·mol-1;
(2)恒定总压1.70 MPa和水碳比[n(H2O)/n(CO)=12∶5]投料,在不同条件下达到平衡时CO2和H2的分压(某成分分压=总压×该成分的物质的量分数)如下表:
①在条件1下,水煤气变换反应的平衡常数K=________。
②对比条件1,条件2中H2产率下降是因为发生了一个不涉及CO2的副反应,写出该反应方程式______________________。
p(CO2)/MPa p(H2)/MPa p(CH4)/MPa
条件1 0.40 0.40 0
条件2 0.42 0.36 0.02
2
CO+3H2 CH4+H2O
解析:①条件1下没有甲烷生成,只发生了水煤气变换反应,该反应是一个气体分子数不变的反应。设在条件1下平衡时容器的总体积为V,水蒸气和一氧化碳的投料分别为12 mol和5 mol,参加反应的一氧化碳为x mol,根据已知信息可得以下三段式:
       CO(g)+H2O(g) CO2(g)+H2(g)
开始(mol) 5 12 0 0
转化(mol) x x x x
平衡(mol) 5-x 12-x x x
×1.7 MPa=0.40 MPa,解得x=4;
则平衡常数K==2;
②根据表格中的数据可知,有甲烷生成,且该副反应没有二氧化碳参与,且氢气的产率降低,则该方程式为:CO+3H2 CH4+H2O;
(3)下列说法正确的是________。
A.通入反应器的原料气中应避免混入O2
B.恒定水碳比[n(H2O)/n(CO)],增加体系总压可提高H2的平衡产率
C.通入过量的水蒸气可防止Fe3O4被进一步还原为Fe
D.通过充入惰性气体增加体系总压,可提高反应速率
AC
解析:一氧化碳和氢气都可以和氧气反应,则通入反应器的原料气中应避免混入O2,A正确;该反应前后气体计量系数相同,则增加体系总压平衡不移动,不能提高平衡产率,B错误;通入过量的水蒸气可以促进四氧化三铁被氧化为氧化铁,水蒸气不能将铁的氧化物还原为单质铁,但过量的水蒸气可以降低体系中CO和H2的浓度,从而防止铁的氧化物被还原为单质铁,C正确;若保持容器的体积不变,通过充入惰性气体增加体系总压,反应物浓度不变,反应速率不变,D错误;故选AC;
(4)水煤气变换反应是放热的可逆反应,需在多个催化剂反应层间进行降温操作以“去除”反应过程中的余热(如图1所示),保证反应在最适宜温度附近进行。
①在催化剂活性温度范围内,图2中b~c段对应降温操作的过程,实现该过程的一种操作方法是________。
A.按原水碳比通入冷的原料气
B.喷入冷水(蒸气)
C.通过热交换器换热
②若采用喷入冷水(蒸气)的方式降温,在图3中作出CO平衡转化率随温度变化的曲线。
AC
答案:见解析
解析:①按原水碳比通入冷的原料气,可以降低温度,同时化学反应速率稍减小,导致CO的转化率稍减小,与图中变化相符,A正确;喷入冷水(蒸气),可以降低温度,但是同时水蒸气的浓度增大,会导致CO的转化率增大,与图中变化不符,B错误;通过热交换器换热,可以降低温度,且不改变投料比,同时化学反应速率稍减小,导致CO的转化率稍减小,与图中变化相符,C正确;故选AC;②增大水蒸气的浓度,平衡正向移动,则一氧化碳的的平衡转化率增大,会高于原平衡线,故图像为:
(5)在催化剂活性温度范围内,水煤气变换反应的历程包含反应物分子在催化剂表面的吸附(快速)、反应及产物分子脱附等过程。随着温度升高,该反应的反应速率先增大后减小,其速率减小的原因是__________________________________________________________
_____________________________________________________________________________________________。
答案:温度过高时,不利于反应物分子在催化剂表面的吸附,从而导致其反应物分子在催化剂表面的吸附量及浓度降低,反应速率减小;温度过高还会导致催化剂的活性降低,从而使化学反应速率减小
解析:反应物分子在催化剂表面的吸附是一个放热的快速过程,温度过高时,不利于反应物分子在催化剂表面的吸附,从而导致其反应物分子在催化剂表面的吸附量及浓度降低,反应速率减小;温度过高还会导致催化剂的活性降低,从而使化学反应速率减小。
4.[2022·全国乙卷]油气开采、石油化工、煤化工等行业废气普遍含有的硫化氢,需要回收处理并加以利用。回答下列问题:
(1)已知下列反应的热化学方程式:
①2H2S(g)+3O2(g)===2SO2(g)+2H2O(g)
ΔH1=-1 036 kJ·mol-1
②4H2S(g)+2SO2(g)===3S2(g)+4H2O(g)
ΔH2=94 kJ·mol-1
③2H2(g)+O2(g)===2H2O(g) ΔH3=-484 kJ·mol-1
计算H2S热分解反应④2H2S(g)===
S2(g)+2H2(g)的ΔH4=________ kJ·mol-1。
+170
解析:根据盖斯定律可知,反应④=(①+②)÷3-③,即ΔH4=(ΔH1+ΔH2)÷3-ΔH3=+170 kJ·mol-1。
(2)较普遍采用的H2S处理方法是克劳斯工艺,即利用反应①和②生成单质硫。另一种方法是,利用反应④高温热分解H2S。相比克劳斯工艺,高温热分解方法的优点是
______________________________________,缺点是________。
高温热分解能够获得H2,H2可作燃料,且副产物少
能耗高
解析:克劳斯工艺无法获取H2,且存在副产物SO2,高温热分解能够获得H2,H2可作燃料,且副产物少;高温热分解法的缺点是需要高温条件,能耗高。
(3)在1 470 K、100 kPa反应条件下,将n(H2S)∶n(Ar)=1∶4的混合气进行H2S热分解反应。平衡时混合气中H2S与H2的分压相等,H2S平衡转化率为________,平衡常数Kp=________ kPa。
50%
4.76
解析:(3)设初始时H2S为1 mol,则Ar为4 mol,H2S转化了2x mol,列三段式:
     2H2S(g) S2(g)+2H2(g)
初始量/mol:  1 0 0
转化量/mol:  2x x 2x
平衡量/mol: 1-2x x 2x
平衡时H2S与H2的分压相等,则n(H2S)=n(H2),1-2x=2x,可得x=0.25,则H2S的平衡转化率=×100%=50%,平衡时,n(H2S)=n(H2)=0.5 mol,n(S2)=0.25 mol,此时容器中气体总物质的量为0.5 mol+0.5 mol+0.25 mol+4 mol=5.25 mol,则H2S(g)、S2(g)、H2(g)的分压分别为(100×) kPa、(100×) kPa、(100×) kPa,代入Kp=,可得Kp≈4.76 kPa。
(4)在1 373 K、100 kPa反应条件下,对于n(H2S)∶n(Ar)分别为4∶1、1∶1、1∶4、1∶9、1∶19的H2S Ar混合气,热分解反应过程中H2S转化率随时间的变化如下图所示。
①n(H2S)∶n(Ar)越小,H2S平衡转化率___________,
理由是___________________________________________________________。
②n(H2S)∶n(Ar)=1∶9对应图中曲线________,计算其在0~0.1 s之间,H2S分压的平均变化率为________ kPa·s-1。
越高(或越大)
H2S的热分解反应为气体分子数增大的反应,恒压条件下,不断充入Ar,导致H2S的分压降低,相当于减压,平衡正向移动,H2S的平衡转化率升高
d
24.9
解析:(4)①n(H2S)∶n(Ar)越小,可理解为恒压条件下,不断充入Ar,导致H2S的分压降低,相当于进行减压操作,H2S的热分解反应为气体分子数增大的反应,减压时平衡正向移动,H2S的平衡转化率升高。②由①中分析知n(H2S)∶n(Ar)=1∶9时的转化率仅低于n(H2S)∶n(Ar)=1∶19时的转化率,故对应图中曲线d,0.1 s时,H2S的转化率为24%,设H2S、Ar初始量分别为1 mol、9 mol,列三段式:
     2H2S(g) S2(g)+2H2(g)
初始量/mol  1  0 0
变化量/mol 0.24 0.12 0.24
0.1 s时/mol 0.76 0.12 0.24
H2S的初始分压=100× kPa=10 kPa,0.1 s时,H2S的分压=100× kPa≈7.51 kPa,则变化的H2S分压约为10 kPa-7.51 kPa=2.49 kPa,故H2S分压的平均变化率为2.49 kPa÷0.1 s=24.9 kPa·s-1。
5.[2022·湖北卷]自发热材料在生活中的应用日益广泛。某实验小组为探究“CaO-Al-H2O”体系的发热原理,在隔热装置中进行了下表中的五组实验,测得相应实验体系的温度升高值(ΔT)随时间(t)的变化曲线,如图所示。
实验编号 a b c d e
反应物组成 0.2 g CaO粉末,5.0 mL H2O 0.15 g Al粉,5.0 mL H2O 0.15 g Al粉,5.0 mL饱和石灰水 0.15 g Al粉,5.0 mL石灰乳 0.15 g Al粉,0.2 g CaO粉末,5.0 mL H2O
回答下列问题:
(1)已知:
①CaO(s)+H2O(l)===Ca(OH)2(s) ΔH1=-65.17 kJ·mol-1
②Ca(OH)2(s)===Ca2+(aq)+2OH-(aq)
ΔH2=-16.73 kJ·mol-1
③(aq)+H2(g)
ΔH3=
则CaO(s)+2Al(s)+7H2O(l)===Ca2+(aq)+2[Al(OH)4]-(aq)+3H2(g)的ΔH4=________kJ·mol-1。
-911.9
解析:(1)根据盖斯定律可得,①+②+2×③可得反应:CaO(s)+2Al(s)+7H2O(l)===Ca2+(aq)+2[Al(OH)4]-(aq)+3H2(g),则ΔH4=ΔH1+ΔH2+2ΔH3=(-65.17kJ·mol-1)+(-16.73 kJ·mol-1)+2×(-415.0 kJ·mol-1)=-911.9 kJ·mol-1。
(2)温度为T时,Ksp[Ca(OH)2]=x,则饱和溶液中c(OH-)=__________ (用含x的代数式表示)。
(3)实验a中,4 min后ΔT基本不变,
原因是___________________________________________。
mol·L-1
Ca(OH)2在水中的溶解度小,反应①达到了平衡状态
解析:温度为T时,Ca(OH)2饱和溶液中,Ca(OH)2(s) Ca2+(aq)+2OH-(aq),c(OH-)=2c(Ca2+),Ksp[Ca(OH)2]=c(Ca2+)·c2(OH-)=x,则c(OH-)= mol·L-1。
解析:实验a中,CaO和H2O反应①生成Ca(OH)2,4 min后ΔT基本不变,是因为Ca(OH)2在水中的溶解度小,反应①达到了平衡状态。
(4)实验b中,ΔT的变化说明Al粉与H2O在该条件下________(填“反应”或“不反应”)。实验c中,前3 min的ΔT有变化,其原因是________________________;3 min后ΔT基本不变,其原因是________微粒的量有限。
不反应
Al和溶液中的OH-发生了反应
OH-
解析:实验b中,ΔT几乎不变,说明Al粉与H2O在该条件下不反应;实验c中,前3 min的ΔT有变化,是因为Al和溶液中的OH-发生了反应,3 min后ΔT基本不变,是因为饱和石灰水中OH-的浓度较低,OH-的量有限。
(5)下列说法不能解释实验d在10 min内温度持续升高的是________(填标号)。
A.反应②的发生促使反应①平衡右移
B.反应③的发生促使反应②平衡右移
C.气体的逸出促使反应③向右进行
D.温度升高导致反应速率加快
A
解析:实验d中,发生反应②和③,反应③中有气体生成,气体的逸出促使反应③向右进行,反应③的发生使得溶液中OH-的浓度减小,促使反应②平衡右移,这两步反应都是放热反应,温度升高导致反应速率加快;综上所述,实验d在10min内温度持续升高与反应①无关,故选A。
(6)归纳以上实验结果,根据实验e的特征,用文字简述其发热原理
_________________________________________________________________。
实验e中,发生反应①、②和③,反应③中有气体生成,气体的逸出促使反应③向右进行,反应③的发生使得溶液中OH-的浓度减小,促使反应②平衡右移,反应②的发生促使反应①平衡右移,这三步反应都是放热反应,温度升高导致反应速率加快
解析:实验e中,发生反应①、②和③,反应③中有气体生成,气体的逸出促使反应③向右进行,反应③的发生使得溶液中OH-的浓度减小,促使反应②平衡右移,反应②的发生促使反应①平衡右移,这三步反应都是放热反应,温度升高导致反应速率加快。
考情分析
题型 考向 预测
化学反应原理综合题 热化学方程式的书写及反应热计算 化学反应原理综合题仍然会以生产环保和化学史料为情境,通过陌生复杂的情境+陌生的图像形式,经综合考查反应速率和化学平衡,以化学平衡为主,涉及定性分析和定量计算。定性分析主要是外界条件对化学反应速率和化学平衡的影响,定量计算主要是围绕转化率和平衡常数的计算。另外,要关注反应机理的分析、压强平衡常数的计算、反应速率方程及计算、多步反应、动态平衡体系的分析和计算、溶液中微粒变化与本部分知识的综合考查。
反应历程的分析 化学平衡状态判断及影响因素分析 化学反应速率、化学平衡图像分析 化学反应速率、平衡常数及转化率计算 电离平衡、水解平衡、溶解平衡的应用 Ka(Kb)及Ksp的理解与计算 电化学原理应用(书写电极反应式为主) 核心突破·提能力
考点1 反应热计算的常用方法
核 心 梳 理
1.利用盖斯定律进行计算
2.利用键能、活化能进行计算
(1)键能:ΔH=E(反应物总键能)-E(生成物总键能)
(2)活化能:ΔH=E(正反应活化能)-E(逆反应活化能)
典 题 精 研
考向 反应热的计算
例1 二氧化碳催化加氢制甲醇,有利于减少温室气体二氧化碳,二氧化碳加氢制甲醇的总反应可表示为:CO2(g)+3H2(g)===CH3OH(g)+H2O(g),该反应一般认为通过如下步骤来实现:
①CO2(g)+H2(g)===CO(g)+H2O(g) ΔH1=+41 kJ·mol-1
②CO(g)+2H2(g)===CH3OH(g) ΔH2=-90 kJ·mol-1
总反应的ΔH=______ kJ·mol-1;若反应①为慢反应,下列示意图中能体现上述反应能量变化的是____(填标号),判断的理由是
______________________________________________。
-49
A
ΔH1为正值,ΔH2和ΔH为负值,反应①活化能大于反应②的
解析:根据盖斯定律可知总反应=反应①+反应②,则总反应的ΔH=ΔH1+ΔH2=+41 kJ·mol-1 +(-90 kJ·mol-1)=-49 kJ·mol-1。总反应是放热反应,即生成物的总能量比反应物的总能量低,则B项、D项错误;反应①为慢反应,则反应①的活化能较大,故A项正确。
练1 氢气是一种清洁能源,水煤气变换反应的制氢原理为:
CO+H2O(g) CO2(g)+H2(g) ΔH1,水煤气变换部分基元反应如下:
第②步基元反应逆反应的活化能为________eV。
基元反应 活化能Ea(eV) 反应热ΔH(eV)
①CO+H2O+2*===CO*+H2O* 0 -1.73
②H2O*+*===H*+OH* 0.81 -0.41
1.22
解析:根据ΔH=正反应的活化能-逆反应的活化能,可得第②步基元反应逆反应的活化能=正反应的活化能-ΔH=0.81 eV-(-0.41 eV)=1.22 eV。
考点2 化学平衡图像解读与分析
核 心 梳 理
1.化学平衡图像信息的获取
依据化学反应原理中反应速率和平衡移动知识解读图像,关键在于对“数”“形”“义”“性”的综合思考,包括:
(1)明标:明晰横、纵坐标所表示的化学含义,这是理解题意和进行正确思考的前提。明晰坐标含义,也就是用变量的观点分析坐标,找出横、纵坐标的关系,再结合教材,联系相应的知识点。
(2)找点:找出曲线中的特殊点(起点、顶点、拐点、终点、交叉点、平衡点等),分析这些点所表示的化学意义以及影响这些点的主要因素及限制因素等,大多考题就落在这些点的含义分析上,因为这些点往往隐含着某些限制条件或某些特殊的化学含义。
(3)析线:正确分析曲线的变化趋势(上升、下降、平缓、转折等),同时对走势有转折变化的曲线,要分区段进行分析,研究各段曲线的变化趋势及其含义。
2.化学平衡图像信息的加工
在准确解读图像信息的基础上,对试题信息进行加工处理,分析角度如图
典 题 精 研
考向 化学平衡图像解读与分析
例2 二氧化碳催化加氢制甲醇,有利于减少温室气体二氧化碳。二氧化碳加氢制甲醇的总反应可表示为:
CO2(g)+3H2(g)===CH3OH(g)+H2O(g)。
合成总反应在起始物n(H2)/n(CO2)=3时,在不同条件下达到平衡,设体系中甲醇的物质的量分数为x(CH3OH),在t=250 ℃下的x(CH3OH)~p、在p=5×105 Pa下的x(CH3OH)~t如图所示。
(1)图中对应等压过程的曲线是________,判断的理由是____________________________________________________________;
b
总反应ΔH<0,升高温度时平衡向逆反应方向移动,甲醇的物质的量分数变小
解析:氢气和二氧化碳合成甲醇的总反应为放热反应,则升温平衡向逆反应方向移动,混合气体中甲醇的物质的量分数减小,故曲线b表示等压过程的曲线。
(2)当x(CH3OH)=0.10时,CO2的平衡转化率α=________,反应条件可能为______________或______________。
33.3%
5×105 Pa,210 ℃
9×105 Pa,250 ℃
解析:根据起始物n(H2)/n(CO2)=3,设初始时H2为3 mol,CO2为1 mol,达到平衡时转化的CO2为a mol,应用三段式法计算:
      CO2(g) + 3H2(g)===CH3OH(g) + H2O(g)
起始量/mol  1   3   0   0
转化量/mol  a   3a   a   a
平衡量/mol 1-a 3-3a   a   a
则=0.10,计算得a=,故CO2的平衡转化率为 mol÷(1 mol)×100%≈33.3%。结合上述分析知,曲线a、b分别对应t=250 ℃下的x(CH3OH)~p的曲线、p= Pa下的x(CH3OH)~t的曲线,对照图像中的x(CH3OH)=0.10可知,反应条件可能是5×105Pa,210 ℃或9×105Pa,250 ℃。
练2 [2023·山东卷]一定条件下,水气变换反应CO+H2O CO2+H2的中间产物是HCOOH。为探究该反应过程,研究HCOOH水溶液在密封石英管中的分解反应:
Ⅰ.HCOOH CO+H2O(快)
Ⅱ.HCOOH CO2+H2(慢)
研究发现,在反应Ⅰ、Ⅱ中,H+仅对反应Ⅰ有催化加速作用;反应Ⅰ速率远大于反应Ⅱ,近似认为反应Ⅰ建立平衡后始终处于平衡状态。忽略水的电离,其浓度视为常数。
回答下列问题:
(1)一定条件下,反应Ⅰ、Ⅱ的焓变分别为ΔH1、ΔH2,则该条件下水气变换反应的焓变ΔH=____________(用含ΔH1、ΔH2的代数式表示)。
ΔH2-ΔH1
解析:根据盖斯定律,由Ⅱ-Ⅰ可得水气变换反应CO(g)+H2O(g) CO2(g)+H2(g) ΔH=ΔH2-ΔH1。
(2)反应Ⅰ正反应速率方程为:v=kc(H+)·c(HCOOH),k为反应速率常数。T1温度下,HCOOH电离平衡常数为Ka,当HCOOH平衡浓度为x mol·L-1时,H+浓度为__________ mol·L-1,此时反应Ⅰ正反应速率v=________ mol·L-1·h-1(用含Ka、x和k的代数式表示)。
kx
解析:根据HCOOH HCOO-+H+,设平衡时H+浓度为a mol·L-1,则HCOOH电离平衡常数Ka=,a=,此时反应Ⅰ正反应速率v=k·c(H+)·c(HCOOH)=kx mol·L-1·h-1。
(3)T3温度下,在密封石英管内完全充满 HCOOH水溶液,使HCOOH分解,分解产物均完全溶于水。含碳物种浓度与反应时间的变化关系如图所示(忽略碳元素的其他存在形式)。t1时刻测得CO、CO2的浓度分别为0.70 mol·L-1、0.16 mol·L-1,反应Ⅱ达平衡时,测得H2的浓度为。体系达
平衡后=____________(用含y的代数式表示,下同),反应Ⅱ的平衡常数为
____________。
相同条件下,若反应起始时溶液中同时还含有0.10 mol·L-1盐酸,则图示点a、b、c、d中,CO新的浓度峰值点可能是________(填标号)。与不含盐酸相比,CO达浓度峰值时,CO2浓度________(填“增大”“减小”或“不变”),的值________(填“增大”“减小”或“不变”)。
b
减小
不变
解析:
由上述分析及近似认为反应Ⅰ建立平衡后始终处于平衡状态,知t1时刻之后一氧化碳的浓度始终是甲酸浓度的5倍,反应Ⅱ平衡时c(CO2)=c(H2)=y mol·L-1,则结合碳原子守恒知,平衡体系中c(HCOOH)=×(1.0-y)mol·L-1,c(CO)=×(1.0-y)mol·L-1,==,反应Ⅱ的平衡常数K2=。加入0.10 mol·L-1盐酸后,H+作催化剂,反应Ⅰ的反应速率加快,达平衡的时间缩短,催化剂不影响平衡移动,故CO的浓度峰值不变,则CO新的浓度峰值点可能是b点。由图可知,与不含盐酸相比,CO达浓度峰值时,CO2浓度减小(从b点做竖直垂线,观察CO2浓度变化)。温度不变,反应Ⅰ的平衡常数值不变,故的值不变。
考点3 反应速率常数、化学平衡常数的计算
核 心 梳 理
1.速率常数
(1)假设基元反应(能够一步完成的反应)为aA(g)+bB(g)===cC(g)+dD(g),其速率可表示为v=k·ca(A)·cb(B),式中的k称为反应速率常数或速率常数,k与浓度无关,但受温度、催化剂、固体表面性质等因素的影响,通常反应速率常数越大,反应进行得越快。
(2)正、逆反应的速率常数与平衡常数的关系
对于基元反应aA(g)+bB(g) cC(g)+dD(g),v正=k正·ca(A)·cb(B),v逆=k逆·cc(C)·cd(D),平衡常数K==,反应达到平衡时v正=v逆,故K=。
2.化学平衡常数表达式
(1)不要把反应体系中纯固体、纯液体以及稀水溶液中水的浓度写进平衡常数表达式,但在非水溶液中,若有水参加或生成,则此时水的浓度不可视为常数,应写进平衡常数表达式中。
(2)Kp含义及表达式
①Kp含义:有气体参与的反应,在化学平衡体系中,各气体物质的平衡分压替代平衡浓度,计算的平衡常数叫压强平衡常数。
②表达式
对于一般可逆反应mA(g)+nB(g) pC(g)+qD(g),当在一定温度下达到平衡时其压强平衡常数Kp可表示为Kp=
其中p(A)、p(B)、p(C)、p(D)表示反应物和生成物的分压,用平衡分压可以这样计算:
分压=总压×物质的量分数。
p(总)=p(A)+p(B)+p(C)+p(D);
==。
(3)Kx含义:在化学平衡体系中,各物质的物质的量分数替代平衡浓度,计算的平衡常数。
3.转化率、产率及分压的计算
反应物转化率=×100%
生成物的产率=×100%
典 题 精 研
考向1 速率常数的计算与应用
例3 某合成氨速率方程为:v=kcα(N2)cβ(H2)cγ(NH3),根据表中数据,γ=________;
在合成氨过程中,需要不断分离出氨的原因为________。
a.有利于平衡正向移动
b.防止催化剂中毒
c.提高正反应速率
实验
1 m n p q
2 2m n p 2q
3 m n 0.1p 10q
4 m 2n p 2.828q
-1
a
解析:将实验1、3中数据分别代入合成氨的速率方程可得:①q=k·mα·nβ·pγ,③10q=k·mα·nβ·(0.1p)γ,可得γ=-1。合成氨过程中,不断分离出氨,即降低体系中c(NH3),生成物浓度下降,平衡向正反应方向移动,但不会提高正反应速率,a正确,c错误;反应主产物即氨不能使催化剂中毒,b错误。
练3 T ℃时,2NO2(g) N2O4(g),该反应正、逆反应速率与浓度的关系为:v正=k正c2(NO2),v逆=k逆c(N2O4)(k正、k逆这是速率常数)。
(1)图中表示lg v逆~lg c(N2O4)的线是________(填“m”或“n”)
n
解析:v正=k正c2(NO2),则lg v正=lg k正+2lg c(NO2),v逆=k逆c(N2O4),则lg v逆=lg k逆+lg c(N2O4),lg v逆~lg c(N2O4)的线斜率较小,则图中表示lg v逆lgc(N2O4)的线是n;
(2)T ℃时,向刚性容器中充入一定量NO2气体,平衡后测得c(N2O4)为1.0 mol·L-1,则平衡时,v正=________(用含a的表达式表示)。
10a
解析:(2)由①可知,图中表示lg v逆~lgc(N2O4)的线是n,则lg k逆=a,k逆=10a,lg k正=a+2,k正=10a+2,反应达平衡时,v逆=v正,即k正c2(NO2)=k逆c(N2O4),=,该反应的平衡常数K===100,设T ℃时,向刚性容器中充入x mol·L-1NO2,平衡后测得c(N2O4)为1.0 mol·L-1,列出三段式:
        2NO2(g) N2O4(g)
起始/(mol·L-1) x 0
变化/(mol·L-1) 2 1
平衡/(mol·L-1) x-2 1
K==100,x=2.1,则平衡时,NO2的浓度为0.1 mol·L-1,v正=k正c2(NO2)=10a+2×0.12=10a;
(3)T ℃时,向2 L的容器中充入5 mol N2O4气体和1 mol NO2气体,此时v正_____v逆(填“>”“<”或“=”)。

解析:(3)T ℃时,向2 L的容器中充入5 mol N2O4气体和1 mol NO2气体,c(N2O4)==2.5 mol·L-1,c(NO2)==0.5 mol·L-1,v正=10a+2×0.52=2.5×10a+1,v逆=10a×2.5=2.5×10a,v正>v逆。
考向2 平衡常数的计算与应用
例4 [2023·全国乙卷]硫酸亚铁在工农业生产中有许多用途,如可用作农药防治小麦黑穗病,制造磁性氧化铁、铁催化剂等。回答下列问题:
(1)在N2气氛中,FeSO4·7H2O的脱水热分解过程如图所示:
根据上述实验结果,可知x=_______,
y=______。
4
1
解析:(1)由图中信息可知,当失重比为19.4%时,FeSO4·7H2O转化为FeSO4·xH2O,则=19.4%,解得x=4;当失重比为38.8%时,FeSO4·7H2O转化为FeSO4·yH2O,则=38.8%,解得y=1。
(2)已知下列热化学方程式:
FeSO4·7H2O(s)===FeSO4(s)+7H2O(g) ΔH1=a kJ·mol-1
FeSO4·xH2O(s)===FeSO4(s)+xH2O(g) ΔH2=b kJ·mol-1
FeSO4·yH2O(s)===FeSO4(s)+yH2O(g) ΔH3=c kJ·mol-1
则FeSO4·7H2O(s)+FeSO4·yH2O(s)=2(FeSO4·xH2O)(s)的ΔH=________。
(a+c-2b)
解析:①FeSO4·7H2O(s)===FeSO4(s)+7H2O(g) ΔH1=a kJ·mol-1
②FeSO4·xH2O(s)===FeSO4(s)+xH2O(g) ΔH2=b kJ·mol-1
③FeSO4·yH2O(s)===FeSO4(s)+yH2O(g) ΔH3=c kJ·mol-1
根据盖斯定律可知,①+③-②×2可得FeSO4·7H2O(s)+FeSO4·yH2O(s)===2(FeSO4·xH2O)(s),则ΔH=(a+c-2b) kJ·mol-1。
(3)将FeSO4置入抽空的刚性容器中,升高温度发生分解反应:2FeSO4(s) Fe2O3(s)+SO2(g)+SO3(g)(Ⅰ)。
平衡时 T的关系如下图所示。660 K时,该反应的平衡总压p总=________kPa、平衡常数Kp(Ⅰ)===________(kPa)2。Kp(Ⅰ)随反应温度升高而________(填“增大”“减小”或“不变”)。
3
2.25
增大
解析:(3)将FeSO4置入抽空的刚性容器中,升高温度发生分解反应:2FeSO4(s) Fe2O3(s)+SO2(g)+SO3(g)(Ⅰ)。由平衡时 T的关系图可知,660 K时=1.5 kPa,则=1.5 kPa,因此,该反应的平衡总压p总=3 kPa、平衡常数Kp(Ⅰ)=1.5 kPa×1.5 kPa=2.25(kPa)2。由图中信息可知随着温度升高而增大,因此,Kp(Ⅰ)随反应温度升高而增大。
(4)提高温度,上述容器中进一步发生反应2SO3(g) 2SO2(g)+O2(g)(Ⅱ),平衡时=________(用、表示)。在929 K时,p总==35.7 kPa,则=_____ kPa,Kp(Ⅱ)=________kPa(列出计算式)。
46.26
解析:提高温度,上述容器中进一步发生反应2SO3(g) 2SO2(g)+O2(g)(Ⅱ),在同温同压下,不同气体的物质的量之比等于其分压之比,由于仅发生反应(Ⅰ)时=,则=,因此,平衡时=。在929 K时,p总=84.6 kPa、=35.7 kPa,则=p总、=,联立方程组消去,可得=4p总,代入相关数据可求出=46.26 kPa,则=84.6 kPa-35.7 kPa-46.26 kPa=2.64 kPa,Kp(Ⅱ)== kPa。
练4 一氯化碘(ICl)是一种卤素互化物,具有强氧化性,可与金属直接反应,也可用作有机合成中的碘化剂。回答下列问题:
(1)氯铂酸钡(BaPtCl6)固体加热时部分分解为BaCl2、Pt和Cl2,376.8 ℃时平衡常数K′p=1.0×104Pa2。在一硬质玻璃烧瓶中加入过量BaPtCl6,抽真空后,通过一支管通入碘蒸气(然后将支管封闭)。在376.8 ℃,碘蒸气初始压强为20.0 kPa。376.8 ℃平衡时,测得烧瓶中压强为32.5 kPa,则pICl=________kPa,反应2ICl(g)===Cl2(g)+I2(g)的平衡常数K=
_______________________ (列出计算式即可)。
24.8
解析:结合BaPtCl6(s) BaCl2(s)+Pt(s)+2Cl2(g)可得376.8 ℃时K′p=1.0×104 Pa2=p2(Cl2),则平衡时p(Cl2)= Pa=1.0×102 Pa=0.1 kPa。相同温度、相同容积下,气体物质的量之比等于压强之比,设平衡时I2减小的压强为x kPa,根据三段式法得
         I2(g) + Cl2(g) 2ICl(g)
起始压强/(kPa): 20.0 0
转化压强/(kPa): x x 2x
平衡压强/(kPa): 20.0-x 0.1 2x
根据平衡时总压强为32.5 kPa得(20.0-x)+0.1+2x=32.5,解得x=12.4,则平衡时pICl=12.4 kPa×2=24.8 kPa。结合上述分析可知反应2ICl(g) I2(g)+Cl2(g)的平衡常数K==[或]。
(2)McMorris测定和计算了在136~180 ℃范围内下列反应的平衡常数Kp :
2NO(g)+2ICl(g) 2NOCl(g)+I2(g) Kp1
2NOCl(g) 2NO(g)+Cl2(g) Kp2
得到lg Kp1~和lg Kp2~均为线性关系,如下图所示:
①由图可知,NOCl分解为NO和Cl2反应的ΔH________0(填“大于”或“小于”)。
②反应2ICl(g)===Cl2(g)+I2(g)的K=________(用Kp1、Kp2表示);该反应的ΔH________0(填“大于”或“小于”),写出推理过程
______________________________________________________________________。
大于
Kp1·Kp2
大于
设T′>T,即<,由图可知:lg Kp2(T′)-lg Kp2(T)>|lg Kp1(T′)-lg Kp1(T)|=lg Kp1(T)-lg Kp1(T′),则lg Kp2(T′)+lg Kp1(T′)>lg Kp2(T)+lg Kp1(T),即lg [Kp2(T′)·Kp1(T′)]>lg [Kp2(T)·Kp1(T)],故K(T′)>K(T)
解析:(2)①结合图像lg Kp2~×103可知,随横坐标逐渐增大,即温度逐渐降低,lg Kp2逐渐减小,即平衡逆向移动,说明该反应的正反应为吸热反应,即ΔH大于0。②结合题中信息可知Kp1=、Kp2=,故反应2ICl(g) I2(g)+Cl2(g)的平衡常数K==Kp1·Kp2。设T′>T,即<,据图可知:lg Kp2(T′)-lg Kp2(T)>|lg Kp1(T′)-lg Kp1(T)|=lg Kp1(T)-lg Kp1(T′),则lg Kp2(T′)+lg Kp1(T′)>lg Kp2(T)+lg Kp1(T),即lg [Kp2(T′)·Kp1(T′)]>lg [Kp2(T)·Kp1(T)],故K(T′)>K(T),由此可判断出2ICl(g) I2(g)+Cl2(g)为吸热反应,即ΔH大于0。
模考精练·抓落实
模考精练·抓落实
1.甲烷选择性氧化制备甲醇是一种原子利用率高的方法。回答下列问题:
(1)已知下列反应的热化学方程式:
①3O2(g)===2O3(g) K1 ΔH1=285 kJ·mol-1
②2CH4(g)+O2(g)===2CH3OH(l) K2 ΔH2=-329 kJ·mol-1
反应③CH4(g)+O3(g)===CH3OH(l)+O2(g)的ΔH3=______kJ·mol-1,
平衡常数K3=______________(用K1、K2表示)。
-307

解析:根据盖斯定律可知,反应③=×(②-①),所以对应ΔH3=(ΔH2-ΔH1)=(-329 kJ·mol-1-285 kJ·mol-1)=-307 kJ·mol-1;根据平衡常数表达式与热化学方程式之间的关系可知,对应化学平衡常数K3=或 ;
(2)电喷雾电离等方法得到的M+(Fe+、Co+、Ni+等)与O3反应可得MO+。MO+与CH4反应能高选择性地生成甲醇。分别在300 K和310 K下(其他反应条件相同)进行反应MO++CH4===M++CH3OH,结果如下图所示。图中300 K的曲线是________(填“a”或“b”)。300 K、60 s时MO+的转化率为
________ __ (列出算式)。
b
×100%
解析:(2)根据图示信息可知,纵坐标表示-lg[],即与MO+的微粒分布系数成反比,与M+的微粒分布系数成正比。则同一时间段内,b曲线生成M+的物质的量浓度比a曲线的小,证明化学反应速率慢,又因同一条件下降低温度化学反应速率减慢,所以曲线b表示的是300 K条件下的反应;
根据上述分析结合图像可知,300 K、60 s时-lg[]=0.1,
则=10-0.1,利用数学关系式可求出c(M+)=(100.1-1)c(MO+),根据反应MO++CH4===M++CH3OH可知,生成的M+即为转化的MO+,则MO+的转化率为×100%;
(3)MO+分别与CH4、CD4反应,体系的能量随反应进程的变化如下图所示(两者历程相似,图中以CH4示例)。
(ⅰ)步骤Ⅰ和Ⅱ中涉及氢原子成键变化的是________(填“Ⅰ”或“Ⅱ”)。
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则MO+与CD4反应的能量变化应为图中曲线________(填“c”或“d”)。
(ⅲ)MO+与CH2D2反应,氘代甲醇的产量CH2DOD________CHD2OH(填“>”“<”或“=”)。若MO+与CHD3反应,生成的氘代甲醇有________种。

c

2
解析: (ⅰ)步骤Ⅰ涉及的是碳氢键的断裂和氢氧键的形成,步骤Ⅱ中涉及碳氧键形成,所以符合题意的是步骤Ⅰ;
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则此时正反应活化能会增大,根据图示可知,MO+与CD4反应的能量变化应为图中曲线c;
(ⅲ)MO+与CH2D2反应时,因直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则单位时间内产量会下降,则氘代甲醇的产量CH2DOD<CHD2OH;根据反应机理可知,若MO+与CHD3反应,生成的氘代甲醇可能为CHD2OD和CD3OH,共2种。
2.我国研发了一种新型催化剂,可以通过反应2NO(g)+2H2(g) N2(g)+2H2O(g) ΔH达到消除NO污染的效果。
已知:Ⅰ.4NH3(g)+6NO(g) 5N2(g)+6H2O(g)
ΔH1=-1 808 kJ·mol-1;
Ⅱ.N2(g)+3H2(g) 2NH3(g) ΔH2=-92.4 kJ·mol-1。
回答下列问题:
(1)若在密闭容器中同时发生反应Ⅰ和反应Ⅱ,反应Ⅱ对反应Ⅰ中NO的平衡转化率的影响为________(填“增大”“减小”或“无影响”)。
增大
解析:(1)反应Ⅱ可以减小N2(g)浓度,同时增大NH3(g)浓度,使反应Ⅰ平衡正向移动,增大NO的平衡转化率。
(2)2NO(g)+2H2(g) N2(g)+2H2O(g)的ΔH=________ ___ (保留四位有效数字)。
-664.3 kJ·mol-1
解析:根据盖斯定律,(Ⅰ+Ⅱ×2)÷3得,2NO(g)+2H2(g) N2(g)+2H2O(g)的ΔH≈-664.3 kJ·mol-1。
(3)T1 ℃时,向填充催化剂的10 L恒容密闭容器甲中充入2 mol NO和2 mol H2,发生反应2NO(g)+2H2(g) N2(g)+2H2O(g)。10 min末反应达到平衡时测得N2的物质的量为0.8 mol。
①0~10 min内,用NO的浓度变化表示的平均反应速率v(NO)=________________。
②反应的平衡常数Kc=________L·mol-1。
③若起始向填充催化剂的10 L恒容密闭容器乙中充入1 mol NO(g)、1 mol H2(g)、2 mol N2(g)、2 mol H2O(g)。甲、乙容器中平衡时气体压强之比________(填“>”“<”或“=”),理由为
_______________________________________________________________。
0.016 mol·L-1·min-1
800
>
甲中平衡气体压强与乙中起始气体压强之比为,乙中浓度商Qc解析:由题意可得三段式:
①0~10 min内,用NO的浓度变化表示的平均反应速率v(NO)==0.016 mol·L-1·min-1。
②反应的平衡常数Kc==。
③甲中平衡时气体总物质的量为3.2 mol,乙中起始气体总物质的量为6 mol,物质的量之比等于压强之比,则甲中平衡时气体压强与乙中起始气体压强之比为。乙中浓度商Qc==80 L·mol-1(4)有学者对比了新型催化剂与传统催化剂的催化效果。当固定比例的NO(g)和H2(g)的混合气体,以相同流速分别通过填充有两种催化剂的反应器,测得NO的转化率与温度的关系如图所示。
①新型催化剂优于传统催化剂的理由为
__________________________________。
②M、N、P、Q四点中一定未达到平衡状态的是________(填字母)。
在较低温度下,单位时间内NO的转化率更高
M
解析:①由图可知,新型催化剂在较低温度下,单位时间内NO的转化率更高,催化效果更好。
②该反应为放热反应,温度升高反应逆向进行,且催化剂不影响平衡,M点为反应正向进行的状态,N、Q点状态可能是达到平衡后,升高温度平衡逆向移动的状态,P点反应达到平衡状态。
3.碘及其化合物有着多方面的用途,用化学反应原理研究碘及其化合物有重要意义。回答下列问题:
(1)一碘甲烷(CH3I)热裂解可制取乙烯等低碳烯烃化工原料。一碘甲烷(CH3I)热裂解时主要反应有:
反应Ⅰ 2CH3I(g) C2H4(g)+2HI(g) ΔH1
反应Ⅱ 3C2H4(g) 2C3H6(g) ΔH2
反应Ⅲ 2C2H4(g) C4H8(g) ΔH3=(298K)
实验测得,反应Ⅰ、Ⅱ的ΔH随温度的变化如图1所示,在体积为1 L的密闭容器中,起始投料1 mol CH3I(g),反应温度对平衡体系中乙烯、丙烯和丁烯物质的量分数的影响如图2所示。
①298 K时,反应3CH3I(g) C3H6(g)+3HI(g) ΔH4;ΔH4=________kJ·mol-1。
②当体系温度高于600 K时,乙烯的物质的量分数随温度升高而显著增加的可能原因是
___________________________________________________________。
③若维持体系温度为715 K,CH3I(g)的平衡转化率为________,反应Ⅰ以物质的量分数表示的平衡常数Kx=________。
+66.3
反应Ⅰ吸热,反应Ⅱ、Ⅲ放热,升高温度,反应Ⅰ平衡正向移动,反应Ⅱ、Ⅲ平衡逆向移动,三者均使C2H4的平衡物质的量分数增加
80%
0.64
解析:(1)①反应Ⅰ为分解反应,反应Ⅱ为化合反应,大多数分解反应为吸热反应,大多数化合反应为放热反应,故298 K下,ΔH1=+80.2 kJ·mol-1;ΔH2=-108 kJ·mol-1;根据盖斯定律,反应(Ⅰ×3+Ⅱ)可得反应3CH3I(g) C3H6(g)+3HI(g),故ΔH4=66.3 kJ·mol-1。②反应Ⅰ吸热,反应Ⅱ、Ⅲ放热,升高温度,反应Ⅰ平衡正向移动,反应Ⅱ、Ⅲ平衡逆向移动,三者均使C2H4的平衡物质的量分数增加。③由图可知,715 K,平衡时n(C3H6)=n(C4H8)=2n(C2H4),设平衡时n(C2H4)=x,则n(C3H6)=n(C4H8)=2x,n(CH3I)=y,则由反应Ⅰ守恒可知n(HI)=1-y,由碳元素守恒得1=y+2x+6x+8x①,C2H4的物质的量分数为4%,即4%=②,由①②得x=,y=,故CH3I的转化率为×100%=80%;平衡时n(总)=1+5x=,CH3I的物质的量分数为=,HI的物质的量分数为=,则Kx==0.64。
(2)研究HI的分解与合成对提高反应Ⅰ中CH3I(g)的平衡转化率有重要意义。T ℃,将a mol I2(g)和a mol H2(g)置于已抽成真空的特制1 L密闭容器中,40 min时体系达到平衡,体系中存在如下反应关系:
Ⅰ.I2(g) 2I(g) Kp1=2.304
Ⅱ.H2(g)+I2(g) 2HI(g) Kp2
Ⅲ.HI(g) H(g)+I(g) Kp3=8.0×10-6
Ⅳ.H2(g) 2H(g) Kp4=1.0×10-9
①则Kp2=________。
②实验测得平衡体系总压强为5.0×107 Pa,HI的分压为3.6×107 Pa,H2的分压为7.2×106 Pa,已知该反应的正反应速率为v正=k正·x(H2)·x(I2),逆反应速率为v逆=k逆·x2(HI),其中k正、k逆为速率常数,x为物质的量分数,若k正=b min-1,在t=40 min时,v正=___________min-1(用含b的代数式表示)。
36
1.44×10-2b
解析:①由盖斯定律可知,Ⅱ=Ⅰ+Ⅳ-2Ⅲ,故Kp2===36。
②因为压强之比等于物质的量之比,40 min达到平衡时,Kp=,即36=,故p(I2)=5×106Pa,故v正=k正·x(H2)·x(I2)=b×min-1=1.44×10-2bmin-1。
4.Fe C合金薄带在Ar H2O H2气氛中进行脱碳处理是生铁炼钢的新路径,可能涉及的反应如下:
①C+H2O(g) CO(g)+H2(g)ΔH1=a kJ·mol-1
②Fe(s)+H2O(g) H2(g)+FeO(s)ΔH2=b kJ·mol-1
③3Fe(s)+4H2O(g) 4H2(g)+Fe3O4(s)ΔH3=c kJ·mol-1
④3FeO(s)+H2O(g) H2(g)+Fe3O4(s) ΔH4
(1)ΔH4=________kJ·mol-1(用含字母的代数式表示);
(c-3b)
解析:依据盖斯定律有④=③-3×②,则ΔH4=ΔH3-3×ΔH2=(c-3b) kJ·mol-1。
(2)1 103 K时,在刚性容器中加入足量Fe和一定量H2O发生反应③,反应前气体总压为p,t min后达到平衡,此时H2的物质的量分数为0.492。
①该反应的Kp=________(写出数学计算式)。
②0~t min,用单位时间内分压变化表示的反应
速率vH2O=________。
解析:3Fe(s)+4H2O(g) 4H2(g)+Fe3O4(s),反应前后气体分子数不变,压强不变,反应达平衡时总压仍为p,此时氢气的物质的量分数为0.492,则水蒸气的物质的量分数为0.508,氢气分压为0.492p、水蒸气分压为0.508p。
①该反应的Kp==。②0~t min,用单位时间内分压变化表示的反应速率vH2O==。
(3)为了防止脱碳过程中Fe被H2O氧化,需要通入一定比例H2。
①通入H2能抑制铁被氧化,原因是
_______________________________________。
②下图1表示铁元素存在形态与反应温度、水蒸气含量的关系。当pH2O/p(H2+H2O)=0.5,反应温度从845 K升到1 073 K,含铁物质发生反应
的化学方程式______________________________。
通入氢气能使反应②和③的平衡逆向移动 
Fe3O4+H23FeO+H2O
解析:①通入H2能抑制铁被氧化,是因为通入氢气能使反应②和③的平衡逆向移动,从而防止铁被氧化。②当=0.5,反应温度从845 K升到1 073 K,从图示可看出为四氧化三铁转化为氧化亚铁的过程,含铁物质发生反应的化学方程式为:Fe3O4+H23FeO+H2O。
(4)对碳的质量分数为4.2%某Fe C合金进行脱碳处理,保持其他条件相同,脱碳时间、脱碳后碳的质量分数、脱碳温度的关系如图2所示。
①a点脱碳效率________(填“大于”“小于”或“等于”)b点。
②c点v正________v逆(填“>”“<”或“=”),理由是________________________________________________________________________________________________________________________。
大于
>
相同温度下,反应从30 min到50 min,碳的质量分数继续下降,说明反应正向进行,故c点v正>v逆。
解析:(4)①由图示可看出,a点碳的质量分数虽然大于b点,为=1.52倍,但a点所用时间是b点的,脱碳效率a点大于b点;②相同温度下,反应从30 min到50 min,碳的质量分数继续下降,说明反应向正方向进行,故c点v正>v逆。(共109张PPT)
专题十四 物质结构与性质
真题研练·析考情
核心突破·提能力
模考精练·抓落实
真题研练·析考情
真题研练
1.[2023·全国乙卷][选修3:物质结构与性质]
中国第一辆火星车“祝融号”成功登陆火星。探测发现火星上存在大量橄榄石矿物(MgxFe2-xSiO4)。回答下列问题:
(1)基态Fe原子的价电子排布式为________。橄榄石中,各元素电负性大小顺序为______________,铁的化合价为________。
(2)已知一些物质的熔点数据如下表:
物质 熔点/℃
NaCl 800.7
SiCl4 -68.8
GeCl4 -51.5
SnCl4 -34.1
3d64s2
O>Si>Fe>Mg
+2
Na与Si均为第三周期元素,NaCl熔点明显高于SiCl4,原因是__________________________________________________。分析同族元素的氯化物SiCl4、GeCl4、SnCl4熔点变化趋势及其原因
SiCl4的空间结构为__________,其中Si的轨道杂化形式为________。
钠的电负性小于硅,氯化钠为离子晶体,而SiCl4为分子晶体
随着同族元素的电子层数的增多,其熔点依次升高,其原因是:SiCl4、GeCl4、SnCl4均形成分子晶体,分子晶体的熔点由分子间作用力决定,相对分子质量增大,其分子间作用力依次增大,分子间作用力越大则其熔点越高
正四面体
sp3
解析:(1)Fe为26号元素,基态Fe原子的价电子排布式为3d64s2。元素的金属性越强,其电负性越小,元素的非金属性越强则其电负性越大,因此,橄榄石(MgxFe2-xSiO4)中,各元素电负性大小顺序为O>Si>Fe>Mg;因为MgxFe2-xSiO4中Mg、Si、O的化合价分别为+2、+4和-2,x+2-x=2,根据化合物中各元素的化合价的代数和为0,可以确定铁的化合价为+2。
(2)Na与Si均为第三周期元素,NaCl熔点明显高于SiCl4,原因是:钠的电负性小于硅,氯化钠为离子晶体,其熔点较高;而SiCl4为分子晶体,其熔点较低。由表中的数据可知,SiCl4、GeCl4、SnCl4熔点变化趋势为:随着同族元素的电子层数的增多,其熔点依次升高,其原因是:SiCl4、GeCl4、SnCl4均形成分子晶体,分子晶体的熔点由分子间作用力决定,相对分子质量增大,其分子间作用力依次增大,分子间作用力越大则其熔点越高。SiCl4的空间结构为正四面体,其中Si的价层电子对数为4,因此Si的轨道杂化形式为sp3。
(3)一种硼镁化合物具有超导性能,晶体结构属于立方晶系,其晶体结构、晶胞沿c轴的投影图如下所示,晶胞中含有________个Mg。该物质化学式为________,B-B最近距离为________。
1
MgB2
a
解析:(3)由硼镁化合物的晶体结构可知Mg位于正六棱柱的顶点和面心,由均摊法可以求出正六棱柱中含有12×+2×=3个Mg,由晶胞沿c轴的投影图可知本题所给晶体结构包含三个晶胞,则晶胞中Mg的个数为1;晶体结构中B在正六棱柱体内共6个,则该物质的化学式为MgB2;由晶胞沿c轴的投影图可知,B原子在图中两个正三角形的重心,该点到顶点的距离是该点到对边中点距离的2倍,顶点到对边的垂线长度为a,因此B-B最近距离为a××2=a。
2.[2023·山东卷]卤素可形成许多结构和性质特殊的化合物。回答下列问题:
(1)-40 ℃时,F2与冰反应生成HOF和HF。常温常压下,HOF为无色气体,固态HOF的晶体类型为____________,HOF水解反应的产物为____________(填化学式)。
(2)ClO2中心原子为Cl,Cl2O中心原子为O,二者均为V形结构,但ClO2中存在大π键(。ClO2中Cl原子的轨道杂化方式为________;O—Cl—O键角______Cl—O—Cl键角(填“>”“<”或“=”)。比较ClO2与Cl2O中Cl—O键的键长并说明原因
分子晶体
HF、H2O2
sp2
 >
键长:ClO2(3)一定条件下,CuCl2、K和F2反应生成KCl和化合物X。已知X属于四方晶系,晶胞结构如图所示(晶胞参数a=b≠c,α=β=γ=90°),其中Cu化合价为+2。上述反应的化学方程式为
_______________________________________________。
若阿伏加德罗常数的值为NA,化合物X的密度
ρ=____________ g·cm-3(用含NA的代数式表示)。
CuCl2+4K+2F22KCl+K2CuF4
解析:(1)常温常压下HOF为无色气体,说明其沸点较低,为分子晶体。比较元素的电负性大小可知,HOF中F为-1价,则其水解反应为HOF+H2O===HF+H2O2,水解产物为HF、H2O2。(2)ClO2为V形结构,且存在3原子5电子的大π键,则Cl的杂化类型为sp2。ClO2中Cl提供1个电子、每个O提供2个电子形成,Cl有1个孤电子对,Cl2O中O存在两个孤电子对,根据孤电子对与成键电子对间的斥力大于成键电子对与成键电子对间的斥力,知Cl2O中Cl—O—Cl键角小于ClO2中O—Cl—O键角。(3)根据均摊法,X的晶胞中白色小球的个数为16×+4×+2=8,黑色小球的个数为8×+2=4,灰色小球的个数为8×+1=2,则X中灰球、黑球、白球的个数比为1∶2∶4,根据Cu化合价为+2,结合元素守恒、化合物中各元素化合价代数和为0可知,X为K2CuF4,则题中反应的化学方程式为CuCl2+4K+2F22KCl+K2CuF4。该晶胞中含有2个K2CuF4,晶胞质量为 g,晶胞体积为a×10-10 cm×b×10-10 cm×c×10-10 cm=abc×10-30 cm3,则化合物X的密度ρ= g÷(abc×10-30 cm3)= g·cm-3。
3.[2023·北京卷]硫代硫酸盐是一类具有应用前景的浸金试剂。硫代硫酸根)可看作是中的一个O原子被S原子取代的产物。
(1)基态S原子价层电子排布式是________。
(2)比较S原子和O原子的第一电离能大小,从原子结构的角度说明理由:_______________________________________________________。
(3)的空间结构是________。
(4)同位素示踪实验可证实中两个S原子的化学环境不同,实验过程为 过程ⅱ中断裂的只有硫硫键,若过程ⅰ所用试剂是Na232 SO3和35S,过程ⅱ含硫产物是_____________________________。
3s23p4
I1(O)>I1(S),氧原子半径小,原子核对最外层电子的吸引力大,不易失去一个电子
四面体形
Na232SO4和Ag235S
(5)MgS2O3·6H2O的晶胞形状为长方体,边长分别为a nm、b nm、c nm,结构如图所示。
晶胞中的[Mg(H2O)6]2+个数为________。已知MgS2O3·6H2O的摩尔质量是,阿伏加德罗常数为NA,该晶体的密度为________ g·cm-3。(1 nm=10-7 cm)
(6)浸金时作为配体可提供孤电子对与Au+形成[Au(S2O3)2]3-。分别判断中的中心S原子和端基S原子能否做配位原子并说明理由
4
×1021
中的中心原子S的价层电子对数为4,无孤电子对,不能做配位原子;端基S原子含有孤电子对,能做配位原子
解析:(1)S是第三周期ⅥA族元素,基态S原子价层电子排布式为3s23p4;
(2)S和O为同主族元素,O原子核外有2个电子层,S原子核外有3个电子层,O原子半径小,原子核对最外层电子的吸引力大,不易失去1个电子,即O的第一电离能大于S的第一电离能;
的中心原子S的价层电子对数为4,无孤电子对,空间构型为四面体形可看作是中1个O原子被S原子取代,则的空间构型为四面体形;
(4)过程Ⅱ中断裂的只有硫硫键,根据反应机理可知,整个过程中最终转化为,S最终转化为Ag2S。若过程ⅰ所用的试剂为Na232SO3和35S,过程Ⅱ的含硫产物是Na232SO4和Ag235S;
(5)由晶胞结构可知,1个晶胞中含有8×+4×+2×+1=4个[Mg(H2O)6]2+,含有4个;该晶体的密度ρ== g·cm-3;
(6)具有孤电子对的原子就可以给中心原子提供电子对。中的中心原子S的价层电子对数为4,无孤电子对,不能做配位原子;端基S原子含有孤电子对,能做配位原子。
4.[2022·全国甲卷]2008年北京奥运会的“水立方”,在2022年冬奥会上华丽转身为“冰立方”,实现了奥运场馆的再利用,其美丽的透光气囊材料由乙烯(CH2===CH2)与四氟乙烯(CF2===CF2)的共聚物(ETFE)制成。回答下列问题:
(1)基态F原子的价电子排布图(轨道表示式)为________。
(2)图a、b、c分别表示C、N、O和F的逐级电离能Ⅰ变化趋势(纵坐标的标度不同)。第一电离能的变化图是____(填标号),判断的根据是
_____________________________________________;
第三电离能的变化图是________(填标号)。
a
同周期元素从左到右,第一电离能呈增大趋势,N原子的价电子排布式为2s22p3,2p轨道是半充满稳定结构,第一电离能比O原子大
b
(3)固态氟化氢中存在(HF)n形式,画出(HF)3的链状结构________。
(4)CF2===CF2和ETFE分子中C的杂化轨道类型分别为________和________;聚四氟乙烯的化学稳定性高于聚乙烯,从化学键的角度解释原因______________________________________________。
(5)萤石(CaF2)是自然界中常见的含氟矿物,其晶胞结构如图所示,X代表的离子是________;若该立方晶胞参数为a pm,正负离子的核间距最小为________ pm。
H—F…H—F…H—F
sp2
sp3
 F的电负性比H大,C—F键的键能比C—H键的大
Ca2+
a
解析:(1)基态F原子的价电子排布式为2s22p5,故其价电子排布图(轨道表示式)为 (2)C、N、O、F均位于第二周期,原子半径逐渐减小,原子核对最外层电子的吸引能力增强,第一电离能逐渐增大,但N原子的价电子排布式为2s22p3,2p轨道是半充满稳定结构,第一电离能比O原子大,故选a;C原子失去2个电子后达到2s2全满稳定结构,再失去1个电子较难,故第三电离能比N原子大,故选b。(3)固态氟化氢分子间存在氢键,故(HF)3的链状结构为H—F…H—F…H—F。(4) CF2===CF2分子中C原子形成碳碳双键,故C原子为sp2杂化;ETFE是乙烯与四氟乙烯的共聚物,可表示为 故在ETFE分子中碳原子为sp3杂化;由于F的电负性比H大,C—F键的键能比C—H键的大,故聚四氟乙烯比聚乙烯稳定。(5)X离子位于顶点和面心,根据均摊法知,X离子数目为8×+6×=4,Y离子位于体内,故Y离子数目为8,结合CaF2的化学式知,X代表的离子是Ca2+;根据晶胞结构图知,Ca2+与F-的最小核间距为正方体体对角线长度的,即正负离子的核间距最小为a pm。
5.[2022·广东卷]硒(Se)是人体必需微量元素之一,含硒化合物在材料和药物领域具有重要应用。自我国科学家发现聚集诱导发光(AIE)效应以来,AIE在发光材料、生物医学等领域引起广泛关注。一种含Se的新型AIE分子Ⅳ的合成路线如下:
(1)Se与S同族,基态硒原子价电子排布式为________。
(2)H2Se的沸点低于H2O,其原因是
______________________________________________________。
(3)关于Ⅰ~Ⅲ三种反应物,下列说法正确的有________。
A.Ⅰ中仅有σ键
B.Ⅰ中的Se—Se键为非极性共价键
C.Ⅱ易溶于水
D.Ⅱ中原子的杂化轨道类型只有sp与sp2
E.Ⅰ~Ⅲ含有的元素中,O电负性最大
(4)Ⅳ中具有孤对电子的原子有________。
(5)硒的两种含氧酸的酸性强弱为H2SeO4________H2SeO3(填“>”或“<”)。研究发现,给小鼠喂食适量硒酸钠(Na2SeO4)可减轻重金属铊引起的中毒。的立体构型为________。
4s24p4
两者都是分子晶体,由于水存在分子间氢键,沸点高
BDE
O、Se
>
正四面体形
(6)我国科学家发展了一种理论计算方法,可利用材料的晶体结构数据预测其热电性能,该方法有助于加速新型热电材料的研发进程。化合物X是通过该方法筛选出的潜在热电材料之一,其晶胞结构如图1,沿x、y、z轴方向的投影均为图2。
①X的化学式为________。
②设X的最简式的式量为Mr,晶体密度为,则X中相邻K之
间的最短距离为______________ nm(列出计算式,NA为阿伏加德罗常数的值)。
K2SeBr6
× ×107
解析:(1)基态硫原子价电子排布式为3s23p4,Se与S同族,Se为第四周期元素,因此基态硒原子价电子排布式为4s24p4。
(2)H2Se的沸点低于H2O,其原因是两者都是分子晶体,水存在分子间氢键,沸点高。
(3)Ⅰ中有σ键,还有大π键,故A错误;Se—Se是同种元素,因此Ⅰ中的Se—Se键为非极性共价键,故B正确;烃都难溶于水,因此Ⅱ难溶于水,故C错误;Ⅱ中苯环上的碳原子和碳碳双键上的碳原子杂化类型为sp2,碳碳三键上的碳原子杂化类型为sp,故D正确;根据同周期从左到右电负性逐渐增大,同主族从上到下电负性逐渐减小,因此Ⅰ~Ⅲ含有的元素中,O电负性最大,故E正确。
(4)根据题中信息Ⅳ中O、Se都有孤对电子,碳、氢、硫都没有孤对电子。
(5)根据非羟基氧越多,酸性越强,因此硒的两种含氧酸的酸性强弱为H2SeO4>H2SeO3。中Se价层电子对数为4+(6+2-2×4)=4,其立体构型为正四面体形。
(6)①根据晶胞结构得到K有8个, 有8×+6×=4,则X的化学式为K2SeBr6。②设X的最简式的式量为Mr,晶体密度为ρ g·cm-3,设晶胞参数为a nm,得到ρ===ρ g·cm-3,解得a=×107 nm。X中相邻K之间的最短距离为晶胞参数的一半即× ×107 nm。
考情分析
题型 考向 预测
物质结构与性质综合题 核外电子排布表示方法 物质结构与性质综合题还会给出一种多元素组成的物质,然后围绕着组成与结构进行设问。考查点基本相同,原子结构与性质主要涉及电子排布表示方法、特殊能层电子排布情况、微粒半径、电负性和第一电离能。分子结构与性质主要涉及杂化方式、化学键类型、空间构型、氢键、配位键、配合物等。晶体结构与性质主要围绕晶胞考查晶体的化学式、原子分数坐标及密度的计算,晶体的性质主要涉及熔、沸点的比较等。
电离能、电负性比较、原因解释及应用 σ键和π键、配位键、配位原子的判断 不同类型微粒结构中配位数的判断 中心原子杂化轨道类型判断 分子及微粒空间结构的判断 分子性质的判断、分析与比较 晶体类型的判断及性质分析、比较 晶胞结构的分析及计算 核心突破·提能力
考点1 电子排布式、电离能和电负性
核 心 梳 理
1.原子核外电子排布遵循的原理及表示方法
(1)遵循的原理:构造原理、泡利原理、洪特规则、能量最低原理。
(2)表示方法
表示方法 举例
电子排布式 Cr:1s22s22p63s23p63d54s1
简化电子排布式 Cu:[Ar]3d104s1
价电子排布式 Fe:3d64s2
电子排布图(或轨道表示式) O:
[微点拨] 能量相同的原子轨道在全满(s2、p6、d10、f14)、半满(p3、d5、f7)和全空(p0、d0、f0)状态时,体系的能量最低。
(3)未成对电子数的判断方法
①根据电子排布式判断
设电子排布式中未充满电子的能级的电子数为n,该能级的原子轨道数为m,则n≤m时,未成对电子数为n;n>m时,未成对电子数为2m-n。
②根据电子排布图判断
电子排布图能够直观地表示未成对电子数,即单独占据一个方框的箭头的个数。
2.第一电离能、电负性
(1)规律:在元素周期表中,元素的第一电离能从左到右总体呈增大的趋势,从上向下逐渐减小,电负性从左到右逐渐增大,从上向下逐渐减小。如C、N、O、F元素。第一电离能由大到小顺序为F>N>O>C,电负性由大到小顺序为:F>O>N>C。
(2)特例:同周期主族元素,第ⅡA族(ns2)全充满、ⅤA族(np3)半充满,比较稳定,所以其第一电离能大于同周期相邻的ⅢA和ⅥA族元素。
(3)判断:常应用化合价及物质类别判断电负性的大小,如O与Cl的电负性比较:
①HClO中Cl为+1价、O为-2价,可知O的电负性大于Cl;
②Al2O3是离子化合物,AlCl3是共价化合物,可知O的电负性大于Cl。
典 题 精 研
考向1 核外电子排布的表示方法及应用
例1 (1)基态O原子的电子排布式__________________,其中未成对电子有_____个。
(2)基态硅原子最外层的电子排布图为________。
(3)原子中运动的电子有两种相反的自旋状态,若一种自旋状态用+表示,与之相反的用-表示,称为电子的自旋磁量子数。对于基态的磷原子,其价电子自旋磁量子数的代数和为_______________。
(4)基态Fe2+与Fe3+离子中未成对的电子数之比为________。
1s22s22p4或[He]2s22p4
2
+ 
4∶5
解析:(1)O为8号元素,其基态O原子核外有8个电子,因此基态O原子的电子排布式为1s22s22p4或,其2p轨道有2个未成对电子,即O原子有2个未成对电子。
(2)硅元素的原子序数为14,价电子排布式为3s23p2,则最外层电子排布图为
(3)基态磷原子的价电子排布式为3s23p3,其中3s轨道中自旋磁量子数的代数和为0,3p轨道中3个电子自旋方向相同,所以代数和为+或-。
(4)根据构造原理可知基态Fe2+和Fe3+的价层电子排布式分别为3d6和3d5,其未成对电子数分别为4和5,即未成对电子数之比为4∶5。
练1 按要求填空
(1)基态Pb原子的价电子排布式为________,N能层电子数有________个。
(2)基态氮原子的价电子轨道表达式为________。
(3)Pt的电子排布式为[Xe]4f145d96s1,则Pt在元素周期表中处于________区,未成对电子数是________。
(4)基态钛原子的px原子轨道上的电子数为________个。
(5)铬在元素周期表中的位置为____________,其基态原子核外电子占据的原子轨道数为________。
6s26p2
32
d
2
4
第四周期ⅥB族
15
考向2 元素电离能、电负性大小判断
例2 (1)H、C、N的电负性由大到小的顺序为____________________。
(2)Li及其周期表中相邻元素的第一电离能(I1)如表所示。I1(Li)>I1(Na),原因?
I1(Be)>I1(B)>I1(Li),原因?
I1/(kJ·mol-1) Li 520 Be 900 B 801 Na 496 Mg 738 Al
578
N>C>H
Na与Li同主族,Na电子层数多,原子半径大,易失电子,故第一电离能更小
Li、Be、B同周期,核电荷数依次增加,Be为1s22s2全满稳定结构,第一电离能最大。与Li相比,B核电荷数大,原子半径小,较难失去电子,第一电离能较大
解析:(1)元素的非金属性越强,其电负性越大,元素的非金属性强弱顺序为N>C>H,则元素电负性的大小顺序为N>C>H。(2)同主族元素,从上至下,原子半径逐渐增大,第一电离能逐渐减小,所以I1(Li)>I1(Na);同周期元素,从左至右,第一电离能呈现增大的趋势,但由于第ⅡA族元素基态原子s能级轨道处于全充满的状态,能量更低更稳定,所以其第一电离能大于同一周期的第ⅢA族元素,因此I1(Be)>I1(B)>I1(Li)。
练2 (1)与钛同周期的第ⅡB族和ⅢA族两种元素中第一电离能较大的是_______(写元素符号)。
(2)钛铬合金是一种高温结构材料,第二电离能I2(Ti)________(填“>”或“<”)I2(Cr),原因是________________________________________。
(3)①已知Al的第一电离能为578 kJ·mol-1、第二电离能为1 817 kJ·mol-1、第三电离能为2 745 kJ·mol-1、第四电离能为。请解释其第二电离能增幅较大的原因?
②第二电离能I(Cu)________(填“>”或“<”)I(Zn)。
Zn
< 
钛第二电离能失去的是4s1电子,铬第二电离能失去的是3d5电子
Al原子失去一个电子后,其3s上有2个电子为全充满状态,较稳定

(4)以第二周期为例,除Be、N外,其他元素的第一电离能从左到右逐渐增大的原因?
(5)①科学家可以通过________法发现太阳存在大量的铁元素,写出基态Fe原子的价电子排布图:________________。从结构上分析Fe3+比Fe2+稳定的原因:
________________________________________________________。
②SCN-常用来检测Fe3+的存在,三种元素电负性由大到小的顺序为____________。
从左到右,随着核电荷数增加,原子半径逐渐减小,原子核对外层电子的吸引能力逐渐增大,故元素的第一电离能从左到右逐渐增大
原子光谱
Fe3+价电子排布式为3d5,为半充满状态,而Fe2+价电子排布式为3d6 
N>S>C
考点2 共价键 杂化轨道与分子的空间结构
核 心 梳 理
1.共价键
(1)分类
(2)σ键和π键的判断方法
共价单键为σ键,双键中有一个σ键和一个π键,三键中有一个σ键和两个π键。
(3)大π键
①简介:大π键一般是三个或更多个原子间形成的,是未杂化轨道中原子轨道“肩并肩”重叠形成的π键。
②表达式:代表参与形成大π键的原子数,n代表参与形成大π键的电子数。
③常见分子和离子中的大π键
SO2、O3、;
SO3、、、BF3 ;
吡咯 
(4)配位键与配位化合物的结构
(以[Cu(NH3)4]SO4为例)
配合物的组成
①配体:含有孤电子对的分子或离子,如NH3、H2O、CO、Cl-、Br-、I-、SCN-等。
②中心离子:一般是金属离子,特别是过渡金属离子,如Cu2+、Fe3+等。
③配位数:直接同中心原子(或离子)配位的含有孤电子对的分子(或离子)的数目。
④常见配合物:如[Cu(NH3)4](OH)2、[Cu(NH3)4]SO4、[Ag(NH3)2]OH、Fe(SCN)3、Fe(CO)5等。
2.“四方法”判断分子中心原子的杂化类型
(1)根据杂化轨道的空间构型判断
①若杂化轨道在空间的分布为正四面体形,则分子的中心原子发生sp3杂化。
②若杂化轨道在空间的分布呈平面三角形,则分子的中心原子发生sp2杂化。
③若杂化轨道在空间的分布呈直线形,则分子的中心原子发生sp杂化。
(2)根据杂化轨道之间的夹角判断
若杂化轨道之间的夹角为109.5°,则分子的中心原子发生sp3杂化;若杂化轨道之间的夹角为120°,则分子的中心原子发生sp2杂化;若杂化轨道之间的夹角为180°,则分子的中心原子发生sp杂化。
(3)根据中心原子的价层电子对数判断
如中心原子的价层电子对数为4,是sp3杂化,为3是sp2杂化,为2是sp杂化。
(4)根据分子或离子中化学键类型判断
如没有π键为sp3杂化,含1个π键(如碳碳双键、碳氧双键)为sp2杂化,含2个π键(如碳碳三键、碳氮三键)为sp杂化。
3.用价层电子对互斥理论(VSEPR)推测分子的空间结构
(1)价层电子对数的计算
(2)应用
价层电子对数 σ键电 子对数 孤电子对数 VSEPR模型名称 分子的空间结构 实例
2 2 0 直线形 直线形 CO2
3 3 0 三角形 平面三角形 BF3
2 1 V形 SO2
4 4 0 四面体形 正四面体形 CH4
3 1 三角锥形 NH3
2 2 V形 H2O
4.键角大小的判断方法
(1)不同杂化类型:如键角:CH4(2)单键、双键、三键的影响:三键、双键、单键之间的排斥力大小顺序:三键—三键>三键—双键>双键—双键>双键—单键>单键—单键。
(3)杂化类型相同,中心原子孤电子对数越多,键角越小,如键角:CH4>NH3>H2O;>NH3;H3O+>H2O。
(4)杂化类型和孤电子对数均相同,中心原子的电负性越大,键角越大,如键角:NH3>PH3>AsH3。
(5)杂化类型和孤电子对数相同,配位原子电负性越大,键角越小,如键角:NF3典 题 精 研
考向 分子结构的分析
例3 (1)①比较键角大小:气态SeO3分子________离子(填“>”“<”或“=”),原因是_________________________________________。
②富马酸亚铁(FeC4H2O4)是一种补铁剂。富马酸分子的结构模型如图所示:
富马酸亚铁中各元素的电负性由大到小的顺序为__________。

前者中Se为sp2杂化、后者中Se为sp3杂化
O>C>H >Fe
③科学家近期合成了一种固氮酶模型配合物,该物质可以在温和条件下直接活化H2,将N3-转化为,反应过程如图所示:
产物中N原子的杂化轨道类型为________;
sp3
(2)①三价铬离子能形成多种配位化合物。
[Cr(NH3)3(H2O)2Cl]2+中提供电子对形成配位键的原子是________,中心离子的配位数为________。
②[Cr(NH3)3(H2O)2Cl]2+中配体分子NH3、H2O以及分子PH3的空间结构和相应的键角如图所示。
PH3中P的杂化类型是____,H2O的键角小于NH3的,分析原因
__________________________________________________。
(3)磷酸根离子的空间构型为________,其中P的价层电子对数为________、杂化轨道类型为________。
N、O、Cl
6
sp3
 NH3含有1对孤电子对,而H2O含有2对孤电子对,H2O中的孤电子对与成键电子对的排斥作用较大
正四面体 
4
sp3
解析:(1)①SeO3中Se的价层电子对数为3,孤电子对数为中Se的价层电子对数为4,孤电子对数为=1,故SeO3和中Se原子分别为sp2和sp3杂化,则SeO3分子中键角大于中键角。②富马酸亚铁中含C、H、O、Fe四种元素,由电负性递变规律可知,电负性由大到小的顺序为O>C>H >Fe。③产物中N原子形成4个共价键,则其采取sp3杂化。(2)①形成配位键的原子价层必须存在孤电子对,故三种配体NH3、H2O、Cl-中提供孤电子对形成配位键的原子是N、O、Cl,[Cr(NH3)3(H2O)2Cl]2+中中心离子的配位数为3+2+1=6。②PH3中P原子的成键电子对数为3,孤电子对数为1,故价层电子对数是4,采用sp3杂化;由于NH3中N原子含有1个孤电子对,而H2O中O原子含有2个孤电子对,孤电子对越多对成键电子对的斥力越大,因此H2O中的键角小于NH3中的键角。的中心原子P的价层电子对数为4,孤电子对数为0,中心原子P为sp3杂化,故的空间构型为正四面体。
练3 (1)与镓同主族的B具有缺电子性,硼氢化钠(NaBH4)是有机合成中重要的还原剂,其阴离子的立体构型为________。另一种含硼的阴离子[B4O5(OH)4]2-的结构如图所示,其中B原子的杂化方式为________。
正四面体
sp3 、sp2
解析:(1)中中心原子B原子核外的价层电子对数为:4+(3+1-4×1)=4,故其立体构型为正四面体;由图可知,B原子的杂化方式为sp3、sp2。
(2)Ti的配合物有多种。Ti(CO)6、、的配体所含原子中电负性由大到小的顺序是________(写元素符号);中∠H—O—H________(填“大于”“小于”或“等于”)单个水分子中∠H—O—H;的球棍结构如图,Ti的配位数是________,N原子的杂化方式为________。
F>O>C>H
大于
8
sp2
解析:(2)由Ti(CO)6、、可知,它们的配体分别为CO、H2O、F-,含有的原子有H、C、O、F,而C、O、F的氢化物中它们均表现负化合价,说明电负性均大于氢元素,C、O、F属于同周期元素,从左至右,非金属性逐渐增强,非金属性越强,电负性越大,所以H、C、O、F的电负性由大到小的顺序是F>O>C>H;由可知,H2O中O原子的孤电子对进入Ti2+的空轨道,形成配位键,则孤电子对数减小,斥力减小中∠H—O—H变大,所以中∠H—O—H大于单个水分子中∠H—O—H;由球棍结构
可知,每个配体中有两个O原子,与Ti4+形成环状结构作为双齿配体,Ti的配位数是2×4=8;中中心原子N原子的价层电子对数=3+=3+0=3,无孤电子对,N原子采取sp2杂化。
(3)苯分子中含有大π键,可记为右下角“6”表示6个原子,右上角“6”表示6个共用电子)。已知某化合物的结构简式为 ,不能使溴的四氯化碳溶液褪色,该分子中的大π键可表示为________,Se的杂化方式为________。
(4)SOCl2中心S原子VSEPR模型为________。1 mol氟硼酸铵NH4BF4中含有________mol配位键。
(5)1 mol [Co(NH3)6]Cl2中含有σ键的数目为________,配体分子为________分子(填“极性”或“非极性”)。
正四面体
2
24NA
极性
解析:(3) 不能使溴的四氯化碳溶液褪色,由此推知,该分子中存在大π键,由其结构简式可知,形成大π键的原子个数是5个,有6个电子参与成键,因此可表示为其中Se的杂化方式为sp2。
(4)SOCl2中心S原子的价电子对数为3+(6-2-2×1)=4,VSEPR模型为正四面体。氟硼酸铵NH4BF4中铵根离子中有1个配位键、中有1个配位键,1 mol氟硼酸铵NH4BF4含有2 mol配位键。
(5)6个NH3与Co2+之间形成6个配位键,属于σ键,每个氨气分子中的氮氢键也为σ键,共6+3×6=24,所以1 mol [Co(NH3)6]Cl2含有的σ键个数为24NA。氨气分子为极性分子。
考点3 微粒间作用力对物质性质的影响
核 心 梳 理
1.非极性分子与极性分子的判断
2.范德华力、氢键、共价键对物质性质的影响
范德华力 氢键 共价键
作用微粒 分子 H与N、O、F 原子
强度比较 共价键>氢键>范德华力 影响因素 组成和结构相似的物质,相对分子质量越大,范德华力越大 形成氢键元 素的电负性 原子半径
对性质 的影响 影响物质的熔点、沸点、溶解度等物理性质 分子间氢键使熔、沸点升高,溶解度增大 键能越大,稳定性越强
3.晶体熔、沸点高低的比较
(1)一般情况下,不同类型晶体的熔、沸点高低规律:共价晶体>离子晶体>分子晶体,如:金刚石>NaCl>Cl2;(金属晶体熔、沸点有的很高,如钨、铂等;有的则很低,如汞等)。
(2)形成共价晶体的原子半径越小、键长越短,则键能越大,其熔、沸点越高,如:金刚石>石英>碳化硅>晶体硅。
(3)形成离子晶体的阴、阳离子的电荷数越多,离子半径越小,则离子键越强,熔、沸点就越高,如:MgO>MgCl2;NaCl>CsCl。
(4)金属晶体中金属离子半径越小,离子所带电荷数越多,其形成的金属键越强,金属单质的熔、沸点就越高,如Al>Mg>Na。
(5)分子晶体的熔、沸点比较规律
①组成和结构相似的分子晶体,相对分子质量越大,其熔、沸点就越高,如:HI>HBr>HCl;
②组成和结构不相似的分子,分子极性越大,其熔、沸点就越高,如:CO>N2;
③同分异构体分子中,支链越少,其熔、沸点就越高,如:正戊烷>异戊烷>新戊烷;
④同分异构体中的芳香烃及其衍生物的沸点,邻位取代物>间位取代物>对位取代物,如:邻二甲苯>间二甲苯>对二甲苯。

典 题 精 研
考向 物质性质的比较与解释
例4 (1)[Cr(NH3)3(H2O)2Cl]2+中配体分子NH3、H2O以及分子PH3的空间结构和相应的键角如图所示。
NH3的沸点比PH3的________,原因
(2)①气态氢化物热稳定性HF大于HCl的主要原因
②常温下,在水中的溶解度乙醇大于氯乙烷,原因

NH3分子间存在氢键
原子半径FCl—H 
乙醇与水之间形成氢键而氯乙烷没有
(3)钙钛矿(CaTiO3)型化合物是一类可用于生产太阳能电池、传感器、固体电阻器等的功能材料。Ti的四卤化物熔点如下表所示,TiF4熔点高于其他三种卤化物,自TiCl4至TiI4熔点依次升高,原因
化合物 TiF4 TiCl4 TiBr4 TiI4
熔点/℃ 377 -24.12 38.3 155
TiF4为离子化合物,熔点高,其他三种均为共价化合物,随相对分子质量的增大分子间作用力增大,熔点逐渐升高
解析:(1)NH3的沸点比PH3高,是因为NH3分子间存在氢键,PH3分子间只有范德华力。(2)①可以根据共价键的稳定性比较气态氢化物的热稳定性,键长越短,键能越大,则气态氢化物的热稳定性越强,原子半径:FCl—H,故HF的热稳定性大于HCl的热稳定性。也可以根据元素非金属性的强弱比较气态氢化物的热稳定性,元素的非金属性越强,气态氢化物的热稳定性越强,非金属性:F>Cl,故HF的热稳定性大于HCl的热稳定性。②影响物质在水中溶解度的因素有:物质的极性、是否含有氢键、能否与水发生化学反应等。乙醇、氯乙烷、水均为极性分子,但乙醇与水分子能形成氢键,因此在水中的溶解度乙醇大于氯乙烷。(3)氟元素非金属性强,TiF4为离子化合物,熔点最高,TiCl4、TiBr4、TiI4为共价化合物,熔点较低,且TiCl4、TiBr4、TiI4结构相似,相对分子质量越大,分子间作用力越强,熔点越高。
练4 (1)氨硼烷(NH3BH3)在高温下释放氢后生成的立方氮化硼晶体具有类似金刚石的结构,但熔点比金刚石低,原因是
___________________________________________________________。
(2)FeCO3可作补血剂,CoCO3可用于陶瓷工业的着色剂。已知:①r(Fe2+)为61 pm,r(Co2+)为65 pm。②隔绝空气加热:FeCO3FeO+CO2↑;CoCO3CoO+CO2↑。分别加热FeCO3和CoCO3时,FeCO3的分解温度低于CoCO3,其原因是
___________________________________________________________。
B—N的键长大于C—C,键能小于C—C
FeO和CoO都是离子晶体,r(Fe2+)(3)①GaCl3的熔点为77.9 ℃,沸点为201.3 ℃;而GaN的熔点为1 700 ℃,其原因是____________________________________________。
②H2O、H2S、H2Te的沸点由高到低的顺序为_______________。
③Cu和K属于同一周期元素,且原子核外最外层电子排布相同,但金属Cu的熔点比金属K的高,原因是
_______________________________________________________。
GaCl3为分子晶体,GaN为共价晶体
H2O>H2Te>H2S
Cu的原子半径较小且价电子数较多,金属键较强
(4)已知苯酚 具有弱酸性,其Ka=1.1×10-10;水杨酸第一级电离形成的离子 能形成分子内氢键。据此判断,相同温度下电离平衡常数Ka2(水杨酸)________Ka(苯酚)(填“>”或“<”),其原因
<
中形成分子内氢键,使其更难电离出H+
解析:(1)B—N的键长大于C—C,键长越大,键能越小,B—N的键能小于C—C,破坏C—C需要更多的能量,所以立方氮化硼晶体的熔点比金刚石低。(2)不溶性碳酸盐分解过程的实质是金属阳离子与碳酸根离子中的氧离子结合的过程,产物FeO和CoO都是离子晶体,金属阳离子半径越小,形成氧化物的离子键越强、物质越稳定,由于r(Fe2+)(4) 中形成分子内氢键,使其更难电离出H+,相同温度下电离平衡常数Ka2(水杨酸)小于Ka(苯酚)。
考点4 晶胞的结构分析及计算
核 心 梳 理
1.晶胞分析的方法——均摊法
2.晶体密度及粒子间距离的计算方法
(1)计算晶体密度的方法
(2)计算晶体中粒子间距离
①分析思路
②常见堆积模型粒子之间的距离(a为晶胞参数,r为粒子半径)
3.常见离子晶体结构分析
晶胞 配位数及影响因素 密度的计算(a为晶胞边长,NA为阿伏加德罗常数)
配位数 影响因素 NaCl型 6 阳离子与阴离子的半径比值越大,配位数越多,另外配位数还与阴、阳离子的电荷比有关等 
CsCl型 8
ZnS型 4
CaF2型 F-:4 Ca2+:8
4.运用立体几何模型突破原子坐标参数难题
(1)要看懂晶胞模型,找到原点
以晶胞参数为单位长度建立的坐标系可以表示晶胞中各原子的位置,称作原子分数坐标,例如图中原子1的坐标为,则原子2和3的坐标分别为、。
没有给出原点,我们需要看坐标系提示的方向: ,确定原子4的坐标为(0,0,0)。
(2)确定顶点坐标
顶点坐标一般在三个方向上都占坐标单位的整数值,如图,确定原子1~8的坐标:1(0,0,0),2(0,1,0),3(1,1,0),4(1,0,0),5(0,0,1),6(0,1,1),7(1,1,1),8(1,0,1)。
(3)确定体心的坐标
如图,9原子位于体心,分别占据三个方向坐标单位的一半,因此原子9的坐标为。
(4)确定面心的坐标
如图所示,原子10~15分别位于六个面的面心,原子1的坐标为(0,0,0),则确定坐标参数:
10,11,12,
13,14,15
(5)特殊位置原子坐标参数
如图,金刚石晶胞,试确定原子1~4的坐标参数。
原子1~4位于晶胞内,但是不位于体心,在x轴上,原子1、2位于位置,原子3、4位于位置,x轴、y轴俯视图如图。
以此类推:x轴、z轴俯视图如图所示。
按照此方法我们可以确定原子坐标:1,2,3,4。
典 题 精 研
考向 晶体结构的分析与计算
例5 (1)钾、铁、硒可以形成一种超导材料,其晶胞在xz、yz和xy平面投影分别如图所示:
①该超导材料的最简化学式为__________;
②Fe原子的配位数为________;
③该晶胞参数a=b=0.4 nm、c=1.4 nm,阿伏加德罗常数的值为NA,则该晶体的密度为________________g·cm-3(列出计算式)。
KFe2Se2
4
×1021
 解析:(1)①分析晶胞在xz、yz、xy平面的投影图可知,占据顶点和体心位置的为K原子,故K原子个数为8×+1=2,每个竖直棱上有2个Se原子,体内有2个Se原子,故Se原子个数为8×+2=4,每个竖直面上有2个Fe原子,故Fe原子个数为8×=4,该物质的晶胞结构如图所示:
其最简化学式为KFe2Se2。②以1号Fe原子为研究对象,2号和3号铁原子及其对称位置的2个Fe原子距离1号Fe原子最近,故Fe的配位数为4。③该晶胞的质量为 g,体积为,故该晶体的密度为×1021 g·cm-3。
(2)在金属材料中添加AlCr2颗粒,可以增强材料的耐腐蚀性、硬度和机械性能。AlCr2具有体心四方结构,如图所示。处于顶角位置的是________原子。设Cr和Al原子半径分别为rCr和rAl,则金属原子空间占有率为________%(列出计算表达式)。
Al
×100
解析:(2)由结构图可知,根据均摊法,该晶胞含有4个白球和2个黑球,则黑球代表Al原子,白球代表Cr原子,金属原子的总体积是),晶胞体积是a2c,故原子空间利用率是×100%。
(3)以晶胞参数为单位长度建立的坐标系可以表示晶胞中各原子的位置,称作原子的分数坐标。四方晶系CdSnAs2的晶胞结构如图所示,晶胞棱边夹角均为90°,晶胞中部分原子的分数坐标如表所示。
一个晶胞中有____个Sn,找出距离Cd(0,0,0)最近的Sn____________________(用分数坐标表示)。CdSnAs2晶体中与单个Sn键合的As有________个。

  坐标 原子   x y z
Cd 0 0 0
Sn 0 0 0.5
As 0.25 0.25 0.125
4

4
解析:(3)由四方晶系CdSnAs2晶胞及原子的分数坐标可知,有4个Sn位于棱上,6个Sn位于面上,则属于一个晶胞的Sn的个数为4×+6×=4。与Cd(0,0,0)最近的Sn原子为如图
所示的a、b两个Sn原子,a位置的Sn的分数坐标为,b位置的Sn的分数坐标为。CdSnAs2晶体中Sn除与该晶胞中的2个As键合外,还与相邻晶胞中的2个As键合,故晶体中单个Sn与4个As键合。
练5 (1)(CH3NH3)PbI3晶体属于钙钛矿型结构(如图所示),Pb2+周围距离最近且相等的I-数目有________个。若将A离子作为晶胞的体心另取晶胞Y,则I处于晶胞Y中的______,晶胞中A、B之间的距离为a pm,(CH3NH3)PbI3式量为M,该物质的密度ρ=______________________ g·cm-3(列出计算式,设NA为阿伏加德罗常数的值)。
6
棱心
×1030
解析:(1)由图中可以看出,Pb2+周围距离最近且相等的I-都位于6个面的面心,所以数目有6个。若将A离子作为晶胞的体心另取晶胞Y,则I处于晶胞Y中的棱心,晶胞中A、B之间的距离为面对角线的一半,则立方体的边长为a pm,(CH3NH3)PbI3式量为M,该物质的密度ρ= g·cm-3=×1030 g·cm-3。
(2)一定条件下,CO2分子可形成干冰晶体,干冰的晶胞模型如图所示。在干冰中,与一个CO2分子紧邻的分子共有________个。若阿伏加德罗常数为NA,干冰的密度为ρ g·cm-3,则晶胞体对角线长度是________cm。
12
解析:(2)由晶胞结构可知,晶胞中位于顶点的二氧化碳分子与位于面心的二氧化碳分子紧邻,则与一个二氧化碳分子紧邻的分子共有12个,晶胞中位于顶点和面心的二氧化碳的个数为8×+6×=4,设晶胞的边长为a cm,由晶胞的质量公式可得:=a3ρ,解得a=,则晶胞的体对角线为 cm。
(3)①图3为铜的某种氯化物晶胞示意图,该物质的化学式是________。原子坐标参数可表示晶胞内部各原子的相对位置,图中各原子坐标参数分别为A(0,0,0);B(0,1,1);C(1,1,0);则D原子的坐标参数为______________。
②图3晶胞中C、D两原子核间距为298 pm,阿伏加德罗常数的值为NA,则该晶体密度为__________________ g·cm-3(列出计算式即可)。
CuCl
解析:(3)①利用均摊法可知,晶胞中有4个Cu原子,Cl原子个数为8×+6×=4,二者个数比为1∶1,故该物质的化学式为CuCl;已知A、B、C的原子坐标参数分别为(0,0,0),(0,1,1),(1,1,0),C和D的连线处于晶胞的体对角线上,且C、D间的距离等于体对角线长度的,所以D原子的坐标参数为。②图3晶胞中C、D两原子核间距为298 pm,则晶胞体对角线的长度为4×298 pm;根据勾股定理知,晶胞体对角线长度等于晶胞棱长的倍,晶胞的质量m= g,则晶体的密度ρ=== g·cm-3。
模考精练·抓落实
1.[选修3:物质结构与性质]
将酞菁—钴钛菁—三氯化铝复合嵌接在碳纳米管上,制得一种高效催化还原二氧化碳的催化剂。回答下列问题:
(1)图1所示的几种碳单质,它们互为__________,其中属于共价晶体的是________,C60间的作用力是________。
同素异形体
金刚石
范德华力
解析:(1)同一元素形成的不同单质之间互为同素异形体。图1所示的几种碳单质,它们的组成元素均为碳元素,因此,它们互为同素异形体;其中金刚石属于共价晶体,石墨属于混合型晶体,C60属于分子晶体,碳纳米管不属于共价晶体;C60间的作用力是范德华力。
(2)酞菁和钴酞菁的分子结构如图2所示。
酞菁分子中所有原子共平面,其中p轨道能提供一对电子的N原子是________(填图2酞菁中N原子的标号)。钴酞菁分子中,钴离子的化合价为________,氮原子提供孤对电子与钴离子形成________键。

+2
配位
解析:(2)已知酞菁分子中所有原子共平面,则其分子中所有的C原子和所有的N原子均为sp2杂化,且分子中存在大π键,其中标号为①和②的N原子均有一对电子占据了一个sp2杂化轨道,其p轨道只能提供1个电子参与形成大π键,标号为③的N原子的 p轨道能提供一对电子参与形成大π键,因此标号为③的N原子形成的N—H键易断裂从而电离出H+;钴酞菁分子中,失去了2个H+的酞菁离子与钴离子通过配位键结合成分子,因此,钴离子的化合价为+2,氮原子提供孤对电子与钴离子形成配位键。
(3)气态AlCl3通常以二聚体Al2Cl6的形式存在,其空间结构如图3a所示,二聚体中Al的轨道杂化类型为________。AlF3的熔点为1 090 ℃,远高于AlCl3的192 ℃,由此可以判断铝氟之间的化学键为________键。AlF3结构属立方晶系,晶胞如图3b所示,F-的配位数为________。若晶胞参数为a pm,晶体密度ρ=________ g·cm-3(列出计算式,阿伏加德罗常数的值为NA)。
sp3
离子
2
解析:(3)由Al2Cl6的空间结构结合相关元素的原子结构可知,Al原子价层电子对数是4,其与其周围的4个氯原子形成四面体结构,因此,二聚体中Al的轨道杂化类型为sp3。AlF3的熔点为1 090 ℃,远高于AlCl3的192 ℃,由于F的电负性最大,其吸引电子的能力最强,因此,可以判断铝氟之间的化学键为离子键。由AlF3的晶胞结构可知,其中含大球的个数为12×=3,小球的个数为8×=1,则大球为F-,距F-最近且等距的Al3+有2个,则F-的配位数为2。若晶胞参数为a pm,则晶胞的体积为(a pm)3=,晶胞的质量为,则其晶体密度ρ= g·cm-3。
2.硅材料在生活中占有重要地位。请回答:
(1)Si(NH2)4分子的空间结构(以Si为中心)名称为________,分子中氮原子的杂化轨道类型是________。Si(NH2)4受热分解生成Si3N4和NH3,其受热不稳定的原因
(2)由硅原子形成的三种微粒,电子排布式分别为:①[Ne]3s23p2、②[Ne]3s23p1、,有关这些微粒的叙述,正确的是________。
A.微粒半径:③>①>②
B.电子排布属于基态原子(或离子)的是:①②
C.电离一个电子所需最低能量:①>②>③
D.得电子能力:①>②
四面体
sp3
Si周围的NH2基团体积较大,受热时斥力较强[Si(NH2)4中Si—N键能相对较小];产物中气态分子数显著增多(熵增)
AB
(3)Si与P形成的某化合物晶体的晶胞如图。该晶体类型是________,该化合物的化学式为________。
共价晶体
SiP2
解析:(1)Si(NH2)4分子中Si形成4个σ键,无孤电子对,故Si(NH2)4空间结构为四面体。分子中氮原子形成3个σ键,还有一个孤电子对,杂化轨道数为4,杂化轨道类型为sp3。(2)①为基态Si原子,②为基态Si+,③为激发态Si原子。③有4个电子层,半径最大,①、②具有相同的电子层数和核电荷数,核外电子数越多,粒子半径越大,故微粒半径:③>①>②,A项正确;由上述分析可知,B项正确;①、②电离出一个电子所需能量分别为基态Si的第一电离能、第二电离能,③为激发态Si原子,能量高,电离出一个电子所需能量比①小,故电离一个电子所需最低能量:③<①<②,C项错误;微粒半径①>②,则原子核对最外层电子的吸引力①<②,得电子能力①<②,D项错误。(3)该晶体为空间网状结构,晶体类型为共价晶体,Si位于晶胞的顶点和面心,个数为8×+6×=4,P位于晶胞的体内,个数为8,Si、P个数比为4∶8=1∶2,则该化合物的化学式为SiP2。
3.铬是人体内微量元素之一,是重要的血糖调节剂。
(1)铬在元素周期表中的位置为____________,其基态原子核外电子占据的原子轨道数为________。
(2)已知Cr3+半径小,正电场较强,容易与H2O、NH3、Cl-等分子或离子形成多种配合物,[Cr(H2O)2(NH3)4]Cl3·2H2O是其中的一种。
①该配合物中提供孤对电子形成配位键的原子是________。
②中心原子杂化方式为________(填标号)。
a.sp2 b.sp3
c.sp3d d.d2sp3
③该物质中,氮氢键的键角比独立存在的气态氨气分子中键角略大,其原因是_____________________________________________。
第四周期ⅥB族
15
O、N
d
独立存在的氨气分子氮原子含有一对孤电子对,而该物质中的N原子的孤电子对提供出来与Cr3+形成了成键电子对
(3)钛铬合金是一种高温结构材料,第二电离能I2(Ti)________(填“>”或“<”)I2(Cr),原因是__________________________________________。
(4)铬的一种氮化物晶体立方晶胞结构如图所示。A点分数坐标为(0,0,0),则B点分数坐标为________。已知r(N3-)=a nm,r(Cr3+)=b nm,则AB间距离为________nm。
<
钛第二电离能失去的是4s1电子,铬第二电离能失去的是3d5电子
3(a+b)
解析:(1)铬的原子序数为24,在元素周期表中的位置为第四周期ⅥB族;其基态原子核外电子排布式为1s22s22p63s23p63d54s1,s能级1个轨道,p能级3个轨道,d能级5个轨道,结合洪特规则,其占据的原子轨道数为1+1+3+1+3+5+1=15。(2)①该配合物中[Cr(H2O)2(NH3)4]Cl3·2H2O,Cr3+是中心原子,内界中H2O和NH3是配位体,O原子和N原子提供孤对电子与Cr3+形成配位键;②根据杂化轨道理论,Cr原子最外层的4s、4p轨道与内层3d轨道中的2个发生杂化,形成6个d2sp3杂化空轨道接受O和N提供的孤电子对形成6个配位键,故中心原子杂化方式为d2sp3;③独立存在的氨气分子中氮原子含有一对孤电子对,而该物质中的N原子的孤电子对提供出来与Cr3+形成了成键电子对,孤电子对与成键电子对之间的排斥力大于成键电子对之间的排斥力,故氮氢键的键角比独立存在的气态氨气分子中键角略大。(3)钛的核外电子排布式是,第二电离能失去的是4s1电子,铬第二电离能失去的是3d5电子,3d5处于半充满状态,较为稳定,需要较大能量才能失去,故第二电离能I2(Ti) 4.明矾[KAl(SO4)2·12H2O]是一种净水剂,也可以作为中药,有抗菌、收敛、固脱、利胆的作用。硫酸铁铵[NH4Fe(SO4)2]常用作分析试剂,测定卤素时作指示剂。KIO3是一种重要的无机化合物,可作食盐中的补碘剂。
(1)基态硫原子的核外电子排布式为______________,Fe3+有________个未成对电子。
(2)氧元素比氮元素非金属性强但氧元素的第一电离能小于氮元素,原因是________________________________________。
中________(填“有”或“无”)配位键的空间构型是________。
1s22s22p63s23p4
5
氮原子的2p轨道处于较稳定的半充满状态

正四面体
(4)氮的同周期元素硼能形成BF3,其分子中的硼原子杂化方式为________,它是________(填“极性”或“非极性”)分子。前四周期的氧族元素中的两种元素的氢化物分别为H2X、H2Y,其沸点的高低为H2X<H2Y,稳定性强弱为H2X>H2Y,则Y是________(写元素符号)。
(5)KIO3晶体是一种性能良好的光学材料,晶胞结构如下图所示,边长为a nm,晶胞中K、I、O分别处于顶角、体心、面心位置。与K紧邻的O的个数为________。已知阿伏加德罗常数的值为NA,则KIO3的密度为______________(列式表示)g·cm-3。
sp2
非极性
Se
12
解析:(1)硫为16号元素,核外电子排布式为1s22s22p63s23p4或[Ne]3s23p4;Fe3+的价电子排布式为3d5,有5个未成对电子;
(2)氮原子的2p轨道处于较稳定的半充满状态,失去电子所需的能量更多;
中有一个N原子提供孤电子对、H+提供空轨道形成的配位键;中心S原子价层电子对数为4+=4,不含孤电子对,所以为正四面体形;
(4)BF3中心B原子的价层电子对数为3+=3,所以为sp2杂化;中心原子不含孤电子对,所以空间构型为平面正三角形,正负电荷中心重合,为非极性分子;前四周期的氧族元素分别为O、S、Se,氢化物的沸点:H2O>H2Se>H2S,稳定性:H2O>H2S>H2Se,所以符合题意的X为S、Y为Se;
(5)据图可知与K紧邻的O位于K所在平面的面心,K位于顶点,被12个面共用,所以与K紧邻的O的个数为12;据图可知晶胞中含有一个O原子,结合化学式可知一个晶胞中含有一个KIO3单元,则晶胞的质量为 g,晶胞边长为a nm=a×10-7cm,则晶胞体积为(a×10-7)3cm3,所以密度为 g·cm-3。
5.北京冬奥会使用的是碲化镉(CdTe)太阳能电池,可以直接把光能转化成电能,且能量转化效率较高。回答下列问题:
(1)碲的原子序数为52,基态碲原子的核外电子排布式为[Kr]________。
(2)已知镉和锌同族,位于元素周期表第五周期;银的价层电子排布式为4d105s1。则第二电离能I2(Cd)解析:(2)镉和锌同族,其基态原子的核外电子排布式为[Kr] 4d105s2,第二电离能银失去是全充满的4d10电子,镉失去是5s1电子,故I2(Cd)4d105s25p4
银失去是全充满的4d10电子,镉失去是5s1电子
(3)碲酸(H6TeO6)是白色固体,经X射线研究证明在碲酸分子内的6个羟基排列在碲原子的周围成八面体结构,碲酸中碲原子的价层电子对数为________。
(4)与碲同主族元素(不包含碲和放射性元素)的简单氢化物的沸点由高到低的顺序为__________________(用化学式表示)。
(5)Cd(OH)2不能和碱反应,但可溶于氨水生成配位数为4的配合物,该反应的化学方程式为____________________________;NH3分子中的键角________(填“大于”“小于”或“等于”)NF3分子中的键角。
6
H2O>H2Se>H2S
Cd(OH)2+4NH3===[Cd(NH3)4](OH)2
大于
解析:(3)根据题中信息,碲酸分子内的6个羟基排列在碲原子的周围成八面体结构,则碲酸中碲原子与6个羟基中的O原子形成Te-O共价键,故其价层电子对数为6。
(4)与碲同主族元素(不包含碲和放射性元素)的简单氢化物有H2O、H2Se、H2S,其中H2O分子间有氢键而沸点最高,H2Se的相对分子质量大于H2S而沸点也较高,故沸点由高到低的顺序为H2O>H2Se>H2S。
(5)Cd(OH)2不能和碱反应,但可溶于氨水生成配位数为4的配合物,该反应的化学方程式为:Cd(OH)2+4NH3===[Cd(NH3)4](OH)2;NH3与NF3具有相同的空间构型,都是三角锥型,而N-H键较短,成键电子对间的斥力较大,故NH3分子中的键角大于NF3分子中的键角。
(6)立方晶系CdTe的晶胞结构如图1所示。
①以晶胞参数为单位长度建立的坐标系可以表示晶胞中各原子的位置,称作原子的分数坐标。在该晶胞中建立如图2所示的坐标系,则距离Cd(0,0,0)原子最近的Te原子的分数坐标为________。
() 
图3
②该晶胞沿其体对角线方向上的投影如图3所示,则Te原子和Cd原子重合的位置为____________________(填序号)。
③若晶胞参数为a pm,则图3中d=________(用含a的代数式表示)。
⑧⑩ 或⑦⑨
a
解析:(6)①由立方晶系CdTe的晶胞结构图可知,Cd位于立方晶胞的顶点和面心位置,Te位于顶点Cd及该顶点所在三个面的面心Cd所构成的正四面体体心,根据题意,在该晶胞中建立如图2所示的坐标系,则距离Cd(0,0,0)原子最近的Te原子投影在面对角线的处,故其分数坐标为;
②该晶胞沿其体对角线方向上的投影如图3所示,根据立方晶系CdTe的晶胞结构图示,则 位置是体对角线两端点Cd原子,①②③④⑤⑥分别是立方晶胞的另外六个顶点,⑦⑧⑨⑩ 是六个面心上的Cd原子,四个Te原子中的一个在该体对角线上与 重合,另外三个分别间隔一位与⑧⑨⑩ 是六个面心上的Cd原子重合,故和Cd原子重合的位置为⑧⑩ 或⑦⑨ ;③根据上小题②的分析,d是两面对角线顶点在体对角线的切面上的投影距离,晶胞参数为a pm,面对角线长度为a,体对角线长度为a,则d的长度为体对角线的一半,则为a。(共134张PPT)
专题十五 有机化学基础
真题研练·析考情
核心突破·提能力
模考精练·抓落实
真题研练·析考情
真 题 研 练
1.[2023·新课标卷]莫西赛利(化合物K)是一种治疗脑血管疾病的药物,可改善脑梗塞或脑出血后遗症等症状。以下为其合成路线之一。
回答下列问题:
(1)A的化学名称是_____________________。
(2)C中碳原子的轨道杂化类型有________种。
(3)D中官能团的名称为________、________。
(4)E与F反应生成G的反应类型为________。
(5)F的结构简式为___________。
(6)I转变为J的化学方程式为__________________________________ 。
3-甲基苯酚(或间甲基苯酚)
2
氨基
羟基
取代反应
解析:根据流程,A与2-溴丙烷发生取代反应生成B,B与NaNO2发生反应生成C,C与NH4HS反应生成D,D与乙酸酐[(CH3CO)2O]反应
生成E,结合E的结构简式和D的分子式可知,D为 ;E
与F反应生成G,结合E和G的结构简式和F的分子式可知,F为
;G发生两步反应生成H,H再与NaNO2/HCl反应生成I,结合I的结构
和H的分子式可知,H为 ;
Ⅰ与水反应生成J,J与乙酸酐[(CH3CO)2O]反应生成K,结合K的结构
简式和J的分子式可知,J为 ;据此分析解题。
(1)根据有机物A的结构,有机物A的化学名称为3 -甲基苯酚(或间甲基苯酚)。
(2)有机物C中含有苯环,苯环上的C原子的杂化类型为sp2杂化,还含有甲基和异丙基,甲基和异丙基上的C原子的杂化类型为sp3杂化。
(3)根据分析,有机物D的结构为 ,其官能团为氨基和羟基。
(4)有机物E与有机物F发生反应生成有机物G,有机物E中的羟基与有机物F中的Cl发生取代反应生成有机物G,故反应类型为取代反应。
(5)根据分析,有机物F的结构简式为
(6)有机物I与水反应生成有机物J,该反应的方程式为
(7)在B的同分异构体中,同时满足下列条件的共有________种(不考虑立体异构);
①含有手性碳;②含有三个甲基;③含有苯环。
其中,核磁共振氢谱显示为6组峰,且峰面积比为3∶3∶3∶2∶2∶1的同分异构体的结构简式为________。
9
(7)连有4个不同原子或原子团的碳原子称为手性碳原子。在B的同分异构体中,含有手性碳、含有3个甲基、含有苯环的同分异构体有9种,分别为:
其中,核磁共振氢谱显示为6组峰,且峰面积比为3∶3∶3∶2∶2∶1
的同分异构体的结构简式为
2.[2023·山东卷]根据杀虫剂氟铃脲(G)的两条合成路线回答下列问题。
(1)A的化学名称为_____________ (用系统命名法命名);
B→C的化学方程式为_________________________________;
D中含氧官能团的名称为________;
E的结构简式为________________。
2,6-二氯甲苯
酰胺基
解析:结合已知信息Ⅰ,根据G的结构简式和E、F的分子式进行逆
推,可知E为 ,F为 结合A的分
子式、E的结构简式,推出A为 ,根据B的分子式知,B为
,根据B→C的转化条件及E的结构简式知C应为 ,
结合已知信息Ⅱ可推出D为 ,
路线一的完整路线如下:
根据已知信息I及G和D的结构简式可以推出J为 ,结
合H的分子式和F的结构简式可推出H为
路线二的完整路线如下:
(1)A为 化学名称为2,6-二氯甲苯。由D的结构简式可
知,D中的含氧官能团为酰胺基。
(2)H中有________种化学环境的氢,①~④中属于加成反应的是________(填序号);J中碳原子的轨道杂化方式有________种。
2
②④
2
解析:H为 ,含有2种化学环境的氢,由完整的路线二知,②、
④为加成反应。J为 ,碳原子的杂化方式有sp2、sp3两种。
3.[2023·湖南卷]含有吡喃萘醌骨架的化合物常具有抗菌、抗病毒等生物活性。一种合成该类化合物的路线如下(部分反应条件已简化):
回答下列问题:
(1)B的结构简式为_______________;
(2)从F转化为G的过程中所涉及的反应类型是_________、_________;
(3)物质G所含官能团的名称为_________、_________;
(4)依据上述流程提供的信息,
下列反应产物J的结构简式为___________;
消去反应
加成反应
醚键
碳碳双键
(5)下列物质的酸性由大到小的顺序是________(写标号);
(6) (呋喃)是一种重要的化工原料,其能够发生银镜反应的同分异构体中,除H2C===C===CH—CHO外,还有________种;
③>①>②
4
(7)甲苯与溴在FeBr3催化下发生反应,会同时生成对溴甲苯和邻溴甲苯。依据由C到D的反应信息,设计以甲苯为原料选择性合成邻溴甲苯的路线(无机试剂任选)。
4.[2022·全国乙卷]左旋米那普伦是治疗成人重度抑郁症的药物之一,以下是其盐酸盐(化合物K)的一种合成路线(部分反应条件已简化,忽略立体化学):
已知:化合物F不能与饱和碳酸氢钠溶液反应产生二氧化碳。
回答下列问题:
(1)A的化学名称是_________。
(2)C的结构简式为_______________。
(3)写出由E生成F反应的化学方程式____________________________。
(4)E中含氧官能团的名称为___________。
3-氯丙烯
羧基、羟基
解析:(1)从碳碳双键端点C原子开始编号,氯原子位于3号碳原子上,
故命名为3-氯丙烯。(2)结合C的分子式,对照 和
可得C的结构简式。(3)因F不能和饱和碳酸氢钠溶液反应产生二氧化碳,则E中—COOH与—OH之间发生酯化反应生成F。(4)E中含有羧基(—COOH)和羟基(—OH)两种含氧官能团。
(5)由G生成H的反应类型为_________。
(6)I是一种有机物形成的盐,结构简式为________________。
取代反应
解析:(5)G→H为 即—Cl取代G中—OH。
(6)对比H和J的结构简式,可知盐I中的阴离子为 ,再结合I的分子式可推知I的结构简式。
(7)在E的同分异构体中,同时满足下列条件的总数为________种。
a)含有一个苯环和三个甲基;
b)与饱和碳酸氢钠溶液反应产生二氧化碳;
c)能发生银镜反应,不能发生水解反应。
上述同分异构体经银镜反应后酸化,所得产物中,核磁共振氢谱显示有四组氢(氢原子数量比为6∶3∶2∶1)的结构简式为__________________。
10
解析:满足条件的E的同分异构体中含有1个苯环、3个甲基、1个羧基、1个醛基,将—COOH和—CHO排在苯环的邻、间、对位置,再插入3个甲基(—CH3)可得:
共有10种。上述同分异构体经银镜
反应后酸化,—CHO转化为—COOH,所得产物中核磁共振氢谱有四组氢,即含有四种等效氢,氢原子数量比为6∶3∶2∶1,即2个—CH3处于对称位置,2个—COOH处于对称位置。
5.[2022·广东卷]基于生物质资源开发常见的化工原料,是绿色化学的重要研究方向。以化合物Ⅰ为原料,可合成丙烯酸Ⅴ、丙醇Ⅶ等化工产品,进而可制备聚丙烯酸丙酯类高分子材料。
(1)化合物Ⅰ的分子式为________,其环上的取代基是________(写名称)。
(2)已知化合物Ⅱ也能以Ⅱ′的形式存在。根据Ⅱ′的结构特征,分析预测其可能的化学性质,参考①的示例,完成下表。
序号 结构特征 可反应的试剂 反应形成的新结构 反应类型
① CHCH H2 CH2CH2 加成反应
② 氧化反应

C5H4O2
醛基
—CHO
O2
—COOH
—COOH
CH3OH
—COOCH3
酯化反应(取代反应)
解析:(1)根据化合物Ⅰ的结构简式可知,其分子式为C5H4O2;其环上的取代基为醛基;
(2)②化合物Ⅱ′中含有的—CHO可以被氧化为—COOH;
③化合物Ⅱ′中含有—COOH,可与含有羟基的物质(如甲醇)发生酯化反应生成酯;
(3)化合物Ⅳ能溶于水,其原因是_____________________________。
(4)化合物Ⅳ到化合物Ⅴ的反应是原子利用率100%的反应,且1 mol Ⅳ与1 mol化合物a反应得到2 mol Ⅴ,则化合物a为________。
(5)化合物Ⅵ有多种同分异构体,其中含 结构的有________种,
核磁共振氢谱图上只有一组峰的结构简式为____________。
Ⅳ中羟基能与水分子形成分子间氢键
乙烯
2
解析:(3)化合物Ⅳ中含有羟基,能与水分子形成分子间氢键,使其能溶于水;
(4)化合物Ⅳ到化合物Ⅴ的反应是原子利用率100%的反应,且1 mol Ⅳ与1 mol a反应得到2 mol V,则a的分子式为C2H4,为乙烯;
(5)化合物Ⅵ的分子式为C3H6O,其同分异构体中含有 ,则符
合条件的同分异构体有 和 ,共2种,其中核
磁共振氢谱中只有一组峰的结构简式为
(6)选用含二个羧基的化合物作为唯一的含氧有机原料,参考上述信息,制备高分子化合物Ⅷ的单体。
写出Ⅷ的单体的合成路线________________(不用注明反应条件)。
考情分析
题型 考点 预测
有机化学综合题 有机物的简单命名 有机化学综合题仍会以某种有机物的合成路线为载体,考查有机物名称、官能团名称、结构简式、反应类型、化学方程式、限制条件同分异构体、合成路线设计等,要适当关注多官能团有机化合物命名、有机反应的定量分析、有机合成路线中官能团的保护以及酰胺等含N有机物结构与性质。
官能团的名称或结构简式 结构简式、分子式的书写 有机物的性质判断与检验 有机反应类型的判断 有机反应方程式的书写 限定条件的同分异构体数目确定及书写 设计合成路线 核心突破·提能力
考点1 有机综合推断
核 心 梳 理
1.有机推断的常见突破口
(1)由反应条件推断有机反应类型
反应条件 思考方向
氯气、光照 烷烃取代、苯的同系物侧链上的取代
液溴、催化剂 苯及其同系物发生苯环上的取代
浓溴水 碳碳双键和三键加成、酚取代、醛氧化
氢气、催化剂、加热 苯、醛、酮加成
氧气、催化剂、加热 某些醇氧化、醛氧化
银氨溶液或新制的氢氧化铜悬浊液、加热 醛、甲酸、甲酸酯、葡萄糖等氧化
NaOH水溶液、加热
R—X水解、酯 水解等
NaOH醇溶液、加热 R—X消去
浓硫酸、加热 R—OH消去、醇酯化
浓硝酸、浓硫酸,加热 苯环上的取代
稀硫酸、加热 酯水解、二糖和多糖等水解
(2)根据有机反应的特殊现象推断有机物的官能团
①使溴水褪色,则表示该物质中可能含有碳碳双键、碳碳三键、酚羟基或醛基。
②使酸性KMnO4溶液褪色,则该物质中可能含有碳碳双键、碳碳三键、醛基、醇、酚或苯的同系物(侧链烃基中与苯环直接相连的碳原子上必须含有氢原子)。
③遇FeCl3溶液显色或加入浓溴水出现白色沉淀,表示该物质分子中含有酚羟基。
④加入新制Cu(OH)2并加热,有砖红色沉淀生成(或加入银氨溶液并水浴加热有银镜出现),表示该物质中含有—CHO。
⑤加入金属钠,有H2产生,表示该物质分子中可能有—OH 或—COOH。
⑥加入NaHCO3溶液有气体放出,表示该物质分子中含有—COOH。
(3)以特征产物为突破口来推断碳骨架结构和官能团的位置
①醇的氧化产物与结构的关系
②由消去反应的产物可确定“—OH”或“—X”的位置。
③由取代产物的种类或氢原子环境可确定碳骨架结构。有机物取代产物越少或相同环境的氢原子数越多,说明该有机物结构的对称性越高,因此可由取代产物的种类或氢原子环境联想到该有机物碳骨架结构的对称性而快速进行解题。
④由加氢后的碳骨架结构可确定碳碳双键或碳碳三键的位置。
⑤由有机物发生酯化反应能生成环酯或高聚酯,可确定该有机物是含羟基的羧酸;根据酯的结构,可确定—OH与—COOH的相对位置。
2.多官能团有机物的命名
(1)含苯环的有机物命名
①苯环作母体的有苯的同系物、卤代苯、硝基取代物等。如:
邻二甲苯或1,2-二甲苯; 间二氯苯或1,3-二氯苯。
②苯环作取代基,当有机物除含苯环外,还含有其他官能团,苯环作取代基。
如: 苯乙烯;
对 苯二甲酸或1,4-苯二甲酸。
(2)多官能团物质的命名
命名含有多个不同官能团化合物的关键在于要选择优先的官能团作为母体。官能团的优先顺序为(以“>”表示优先):羧基>酯基>醛基>羰基>羟基>氨基>碳碳三键>碳碳双键>(苯环)>卤素原子>硝基,如:
对硝基氯苯。
典 题 精 研
考向 有机综合推断
例1 [2023·全国甲卷][选修5:有机化学基础]
阿佐塞米(化合物L)是一种可用于治疗心脏、肝脏和肾脏病引起的水肿的药物。L的一种合成路线如下(部分试剂和条件略去)。
已知:R—COOHR—COClR—CONH2
回答下列问题:
(1)A的化学名称是           。
(2)由A生成B的化学方程式为               。
(3)反应条件D应选择    (填标号)。
a.HNO3/H2SO4   b.Fe/HCl
c.NaOH/C2H5OH  d.AgNO3/NH3
(4)F中含氧官能团的名称是    。
(5)H生成I的反应类型为    。
邻硝基甲苯(或2-硝基甲苯)
b
羧基
消去反应
(3)根据分析,有机物C生成有机物E的反应为还原反应,根据反应定义,该反应为一个加氢的反应,因此该反应的反应条件D应为b:Fe/HCl。
(4)有机物F中的含氧官能团为—COOH,名称为羧基。
(5)有机物H生成有机物I的反应发生在有机物H的酰胺处,该处与POCl3发生消去反应脱水得到氰基。
(6)化合物J的结构简式为    。
(7)具有相同官能团的B的芳香同分异构体还有    种(不考虑立体异构,填标号)。
a.10  b.12  c.14  d.16
其中,核磁共振氢谱显示4组峰,且峰面积比为2∶2∶1∶1的同分异
构体结构简式为     。
d
解析:(6)根据分析可知有机物J的结构简式为 。
(7)分子式为C7H6ClNO2的芳香同分异构体且含有—Cl、—NO2两种官能团的共有17种,分别为:
,除有机物B外,其同分异构体的个数为16个;在这些同分异构体中核磁共振氢谱的峰面积比为2∶2∶1∶1,说明其结构中有4种化学环境的H原子,该物质应为
一种对称结构,则该物质为
练1 [2023·全国乙卷][选修5:有机化学基础]
奥培米芬(化合物J)是一种雌激素受体调节剂,以下是一种合成路线(部分反应条件已简化)。
已知: 。
回答下列问题:
(1)A中含氧官能团的名称是     。
(2)C的结构简式为       。
(3)D的化学名称为    。
醚键和羟基
苯乙酸
解析:有机物A与有机物B发生反应生成有机物C,有机物C与有机物D在多聚磷酸的条件下反应生成有机物E,根据有机物E的结构可以
推测,有机物C的结构为 进而推断出有机物D的结构为
;有机物E与有机物F反应生成有机物G,有机物G根据已知
条件发生反应生成有机物H,有机物H的结构为 ,
有机物H发生两步反应得到目标化合物
J(奥培米芬);据此分析解题。
(1)根据有机物A的结构简式可以看出,其含氧官能团是醚键和羟基。
(2)根据分析,有机物C的结构简式为
(3)根据分析,有机物D的结构简式为 ,其化学名称为苯乙酸。
(4)F的核磁共振氢谱显示为两组峰,峰面积比为1∶1,其结构简式
为    。
(5)H的结构简式为              。
(6)由I生成J的反应类型是    。
取代反应
解析: (4)有机物F的核磁共振氢谱显示为两组峰,且峰面积比为1∶1,说明这4个H原子被分为两组,且物质应该是一种对称的结构,结合有机物F的分子式可以得到,有机物F的结构简式为
(5)根据分析,有机物H的结构简式为 。
(6)对比I、J的结构简式可知,I中酯基水解得到J,水解反应属于取代反应。
(7)在D的同分异构体中,同时满足下列条件的共有    种;
①能发生银镜反应;②遇FeCl3溶液显紫色;③含有苯环。
其中,核磁共振氢谱显示为五组峰、且峰面积比为2∶2∶2∶1∶1的
同分异构体的结构简式为         。
13
解析:能发生银镜反应说明该结构中含有醛基,能遇FeCl3溶液显紫色说明该结构中含有酚羟基,则满足这三个条件的同分异构体有13种。此时可能的情况有,固定醛基、酚羟基的位置处在邻位上,变换甲基的位置,这种情况下有4种可能;固定醛基、酚羟基的位置处在间位上,变换甲基的位置,这种情况下有4种可能;固定醛基、酚羟基的位置处在对位上,变换甲基的位置,这种情况下有2种可能;将醛基与亚甲基相连,变换酚羟基的位置,这种情况下有3种可能,因此满足以上条件的同分异构体有4+4+2+3=13种。其中,核磁共振氢谱显示为五组峰,且峰面积比为2∶2∶2∶1∶1,说明这种同分异构体中不能含有甲基且结构为一种对称结构,因此,这种同分异构体的结构简式为:
考点2 限制条件下同分异构体的书写
核 心 梳 理
1.限定条件的同分异构体的书写方法——碎片组合法
确定碎片 明确书写什么物质的同分异构体,该物质的组成情况怎么样?解读限制条件,从性质联想结构,将物质分解成一个个碎片,碎片可以是官能团,也可是烃基(尤其是官能团之外的饱和碳原子)
组装分子 要关注分子的结构特点,包括几何特征和化学特征。几何特征是指所组装的分子是立体结构还是平面结构,有无对称性。化学特征包括等效氢
2.限定条件与结构的关系
3.含苯环同分异构体数目确定技巧
(1)若苯环上连有2个取代基,其结构有邻、间、对3种。
(2)若苯环上连有3个相同的取代基,其结构有3种。
(3)若苯环上连有—X、—X、—Y 3个取代基,其结构有6种。
(4)若苯环上连有—X、—Y、—Z 3个不同的取代基,其结构有10种。
典 题 精 研
考向 限定条件的同分异构体的分析
例2 有多种同分异构体,同时满足下列条件的
同分异构体有    种(不考虑立体异构)
①苯环上有2个取代基
②能够发生银镜反应
③与FeCl3溶液发生显色反应
其中核磁共振氢谱有五组峰,且峰面积之比为6∶2∶2∶1∶1的结构
简式为       。
15
解析: 的同分异构体满足:①能发生银镜反应,说明
结构中存在醛基,②与FeCl3溶液发生显色发应,说明含有酚羟基,同时满足苯环上有2个取代基,酚羟基需占据苯环上的1个取代位置,
支链上苯环连接方式(红色点标记): 共五种,因此一
共有5×3=15种结构;其中核磁共振氢谱有五组峰,因酚羟基和醛基均无对称结构,因此峰面积之比为6∶2∶2∶1∶1的结构简式一定具有对称性(否则苯环上的氢原子不等效),即苯环上取代基位于对位,核磁共振氢谱中峰面积比为6的氢原子位于与同一碳原子相连的两个甲基上,因此该同分异构的结构简式为 。
练2 苯的二元取代物M是酮基布洛芬( )的同分
异构体,则符合条件的M有    种(不考虑立体异构);
①分子中含有两个苯环,且两个取代基均在苯环的对位;
②遇FeCl3溶液显紫色;
③能发生银镜反应;
④1 mol M最多与3 mol NaOH反应。
其中不能与溴水发生加成反应的同分异构体的结构简式为           。
10
考点3 有机合成路线的设计
核 心 梳 理
1.有机合成中官能团的转变
(1)官能团的引入(或转化)
官能团的引入(或转化) —OH
+H2O;R—X+H2O;R—CHO+H2;
RCOR′+H2;R—COOR′+H2O;多糖水解
—X 烷烃+X2;烯(炔)烃+X2(或HX);R—OH+HX
官能团的引入(或转化) R—OH和R—X的消去;炔烃不完全加成
—CHO 某些醇氧化;烯烃氧化;炔烃水化;糖类水解
—COOH R—CHO+O2;苯的同系物(与苯相连的碳上至少有一个氢)被强氧化剂氧化;羧酸盐酸化;R—COOR′+H2O(酸性条件下)
—COOR 酯化反应
(2)官能团的消除
①消除双键:加成反应、氧化反应。
②消除羟基:消去反应、氧化反应、酯化反应、取代反应。
③消除醛基:还原反应和氧化反应。
(3)官能团的保护
被保护的官能团 被保护的官能团性质 保护方法
酚羟基 易被氧气、臭氧、双氧水、酸性高锰酸钾溶液氧化 ①用NaOH溶液先转化为苯酚钠,后酸化重新转化为苯酚:
②用碘甲烷先转化为苯甲醚,后用氢碘酸酸化重新转化为苯酚:
氨基 易被氧气、臭氧、双氧水、酸性高锰酸钾溶液氧化 先用盐酸转化为盐,后用NaOH溶液重新转化为氨基
碳碳双键 易与卤素单质加成,易被氧气、臭氧、双氧水、酸性高锰酸钾溶液氧化 用氯化氢先通过加成转化为氯代物,后用NaOH醇溶液通过消去反应重新转化为碳碳双键
醛基 易被氧化 乙醇(或乙二醇)加成保护:
2.增长碳链或缩短碳链的方法
举例
增长碳链 2CH≡CH―→CH2===CH—C≡CH
增长碳链
增长碳链
缩短碳链
3.有机合成路线设计的几种常见类型
根据目标分子与原料分子在碳骨架和官能团两方面变化的特点,我们将合成路线的设计分以下情况:
(1)以熟悉官能团的转化为主型
(2)以分子骨架变化为主型
如:以苯甲醛和乙醇为原料设计苯乙酸乙酯( )的合成路线流程图(注明反应条件)。
提示:R—Br+NaCN―→R—CN+NaBr
(3)陌生官能团兼有骨架显著变化型(常为考查的重点)
要注意结合信息、模仿题干中的变化,找到相似点,完成陌生官能团及骨架的变化。
如:模仿
设计以苯甲醇、硝基甲烷为主要原料制备苯乙胺( )的合成路线流程图。
关键是找到原流程中与新合成路线中的相似点。(碳骨架的变化、官能团的变化;硝基引入及转化为氨基的过程)
典 题 精 研
考向 合成路线设计
例3 叶酸拮抗剂Alimta(M)是一种多靶向性抗癌药物。以苯和丁二酸酐为原料合成该化合物的路线如下:
已知:①
回答下列问题:
参照上述合成路线,以乙烯和 为原料,
设计合成 的路线________________________ (其他试剂任选)。
解析:乙烯与水通过加成反应合成乙醇,乙醇氧化生成乙醛,乙醛
发生流程D→E的反应,再与 发生流程E→G的反应,即
练3 沙罗特美是一种长效平喘药,其合成的部分路线如图:
请写出以 (CH3)2C(OCH3)2、CH3NO2为原料制备
的合成路线流程图(无机试剂任用,合成路线流程图示
例见本题题干)。
答案:
解析:根据已知的流程图可推知 ,若要制备 ,则需
将 与(CH3)2C(OCH3)2发生取代反应得到 ,
再与CH3NO2反应得到 ,再利用羟基的消去反应引入碳
碳双键,将碳碳双键与硝基通过加氢最终还原生成氨基,合成路线见答案。
模考精练·抓落实
1.某研究小组按下列路线合成抗癌药物盐酸苯达莫司汀。
已知:
请回答:
(1)化合物A的官能团名称是      。
(2)化合物B的结构简式是        。
(3)下列说法正确的是    。
A.B→C的反应类型为取代反应
B.化合物D与乙醇互为同系物
C.化合物I的分子式是C18H25N3O4
D.将苯达莫司汀制成盐酸盐有助于增加其水溶性
硝基,碳氯键
D
解析:根据A、C的结构简式,结合已知①可推知B为A中—Cl被
CH3NH2中CH3NH—取代所得产物,则B的结构简式为 ;
根据 由I的结构简式,可逆推中间产物为
,结合H的分子式可推出H为 ;
根据G、H的分子式及G→H的转化条件,可推知G和CH3CH2OH发生
酯化反应生成H,则G为 ;根据C+E―→F及FG,
结合已知信息可推知F为 。
完整合成路线如下:
(3)B→C为 中一个—NO2转化为—NH2,为还原
反应,A项错误;化合物D含有2个—OH,与乙醇不互为同系物,B项错误;根据I的结构简式,可推知其分子式为C18H27N3O4,C项错误;将苯达莫司汀制成盐酸盐有助于增加其水溶性,D项正确。
(4)写出G→H的化学方程式
___________________________________________________________。
(5)设计以D为原料合成E的路线(用流程图表示,无机试剂任选)。
解析:(5)根据已知②, 可由HOOCCH2CH2CH2COOH脱水
得到, 只有3个碳原子,HOOCCH2CH2CH2COOH不能通过
氧化为醛、醛氧化为酸得到,可由NCCH2CH2CH2CN水解得到,根据已知①,NCCH2CH2CH2CN可由BrCH2CH2CH2Br和NaCN
发生取代反应得到,BrCH2CH2CH2Br可由 和HBr发生取代反应得到。
(6)写出3种同时符合下列条件的化合物C的同分异构体的结构简式
___________________________________________________________。
①分子中只含一个环,且为六元环;
②1H-NMR谱和IR谱检测表明:分子中共有2种不同化学环境的氢原
子,无氮氮键,有乙酰基
解析:化合物C为 ,分子式为C7H9O2N3,根据分
子中只含一个六元环,共有2种类型氢原子,有乙酰基、无氮氮键,可知符合条件的同分异构体为

2.碳骨架的构建是有机合成的重要任务之一。某同学从基础化工原料乙烯出发,针对二酮H设计了如下合成路线:
回答下列问题:
(1)由A→B的反应中,乙烯的碳碳    键断裂(填“π”或“σ”)。
(2)D的同分异构体中,与其具有相同官能团的有    种(不考虑对映异构),其中核磁共振氢谱有三组峰,峰面积之比为9∶2∶1的结
构简式为        。
(3)E与足量酸性KMnO4溶液反应生成的有机物的名称为    、    。
(4)G的结构简式为    。
π
7
乙酸
丙酮
解析:A为CH2===CH2,与HBr发生加成反应生成B(CH3CH2Br),B与Mg在无水乙醚中发生反应生成C(CH3CH2MgBr),C与
CH3COCH3反应生成D ,D在氧化铝催化下发生消去
反应生成E( ),E和碱性高锰酸钾反应生成F( ),
参考D~E反应,F在氧化铝催化下发生消去反应生成G( ),G
与 发生加成反应生成二酮H,据此分析解答。
(1)A为CH2===CH2,与HBr发生加成反应生成B(CH3CH2Br),乙烯的π键断裂;
(2)D为 ,分子式为C5H12O,含有羟基的同分异构体分别为:
共8种,除去D自身,还有7种同分异构体,其中核磁共振氢谱有三
组峰,峰面积之比为9∶2∶1的结构简式为
(3)E为 ,酸性高锰酸钾可以将双键氧化断开,生成
CH3COOH和 ,名称分别为乙酸和丙酮;
(4)由分析可知,G为
(5)已知: +H2O,H在碱性溶液
中易发生分子内缩合从而构建双环结构,主要产物为I( )
和另一种α,β-不饱和酮J,J的结构简式为      。若经此路线由H合成I,存在的问题有    (填标号)。
a.原子利用率低   b.产物难以分离
c.反应条件苛刻 d.严重污染环境
ab
解析:根据已知 +H2O的反应特征可
知,H在碱性溶液中易发生分子内缩合从而构建双环结构,主要产物
为I( )和J( )。若经此路线由H合成I,会同
时产生两种同分异构体,导致原子利用率低,产物难以分离等问题。
3.E是具有良好的靶标识别性能有机物,在精准治疗方面有重要作用。其某种合成路线如下:
已知:与羰基相连的碳原子上的H容易与卤代烃发生取代反应,回答有关问题。
(1)E中含氧官能团的名称是     。
(2) 的名称是    。
(3)F是反应②的副产物,且分子中含5个甲基。
F的键线式为    。
(4)反应④的化学方程式为___________________________________。
酯基、羰基
3-溴丙炔
+H2O
解析:(4)对比D和E的结构简式可知反应④是D和甲醇发生的酯化反应,方程式为:
(5)G是E的同分异构体,且符合下列条件:
①能使溴水褪色②属于芳香族化合物③核磁共振氢谱有4组峰,面积比为6∶2∶1∶1。
G的结构有   种,
写出其中一种的结构简式:__________________________________。
4
解析:E的分子式C8H10O3,不饱和度为4,同分异构体G属于芳香族化合物,则含有苯环,一个苯环的不饱和度为4,因此苯环的侧链均为饱和结构;能使溴水褪色,则含有苯酚的结构;核磁共振氢谱有4组峰,面积比为6∶2∶1∶1(6指有两个对称位置的甲基),可能的结构有4种,分别为:
4.一种药物中间体G的合成路线如下:
已知:①DMF的结构简式为
②-NO2-NH2
(1)C中除氨基之外的官能团名称为       ,检验C中含氧官能团的试剂为___________________________。
(2)E的结构简式为     。E→F的反应类型为    。F→G
的化学方程式为            。
醛基,碳碳双键
银氨溶液或者新制氢氧化铜悬浊液
还原反应
解析:(1)由C的结构简式可知C中除氨基之外的官能团名称为醛基,碳碳双键;检验醛基可以用银氨溶液发生银镜反应,也可以用新制氢氧化铜悬浊液生成砖红色沉淀;
(2)根据F→G的反应条件和G的结构简式可知F为 ,再结
合信息②可知E为 ,根据G的结构简式以及F→G的反应条件,
可知F→G的方程式为:
(3)由A可制备重要的药物中间体对氨基苯甲醚( ),它的同分
异构体中,存在酚羟基且苯环上只有两个取代基的有    种,其中核磁共振氢谱有5组峰,峰面积之比为2∶2∶2∶2∶1的结构简式为
___________________。
6
解析:其同分异构体中存在苯环,有两个支链,一个是羟基,另一个可能是—CH2NH2(邻、间、对),或者—NHCH3(邻、间、对),一共6种;其中核磁共振氢谱有5组峰,峰面积之比为2∶2∶2∶2∶1
的结构简式为
(4)乙酰苯胺( )是精细化工的重要中间体,写出由苯制备
乙酰苯胺的合成路线(其它试剂任选):
____________________________________________________________。
解析:可以先由苯发生硝化反应生成硝基苯,然后将硝基还原为氨基,结合题干给的流程,苯胺再和(CH3CO)2O反应即可得到产物,具体流程见答案。
5.阿帕鲁胺是一种治疗前列腺癌的药物,其一种合成路线如下所示:
回答下列问题:
(1)②的反应类型为    ,④的反应类型为    。
(2)B中含氧官能团的名称为      。
(3)③的化学方程式为                   。
(4)D的结构简式为      。
取代反应
还原反应
硝基、羧基
+HCl
解析:(1)由流程可知,A中甲基被酸性高锰酸钾溶液氧化生成羧
基得到B,B结构简式为 ,B中羧基和SOCl2发生取代
反应生成 ,故②的反应类型为取代反应;
中氯原子被-HNCH3取代生成C,C结构简式为 ,C中
硝基被铁还原发生反应④,故④的反应类型为还原反应;
(2)由B结构简式可知,含氧官能团的名称为硝基、羧基;
(3)由(1)分析可知,③的化学方程式为:
+HCl;(4)D化学式为
C7H4N3F3,比较反应⑥反应物与生成物的结构差异,可知反应⑥生成
物的左半部分为D取代 中氯原子生成的,故D结构简式为
(5)芳香化合物Q与A互为同分异构体,且Q与A具有相同的官能团,则Q的可能结构有    种,其中核磁共振氢谱仅有三组峰的结构
简式为        (写一种)。
16
解析:芳香化合物Q与A互为同分异构体,且Q与A具有相同的官能团,则含有氟原子、硝基;如果苯环上有1个取代基:—CHF(NO2),共1种情况;如果苯环上有2个取代基:—F、—CH2NO2,有邻间对3种情况;—NO2、—CH2F,有邻间对3种情况;如果苯环上有3个取代基:—CH3、—NO2、—F;若—CH3、—NO2处于邻位,—F有4种情况;若—CH3、—NO2处于间位,—F有4种情况;若—CH3、—NO2处于对位,—F有2种情况;合计共17种情况,除去A本身,则Q的可能结构有16种;核磁共振氢谱仅有三组峰,则结构对称性很高,且应该含有2个取代基:—F、—CH2NO2或—NO2、—CH2F,且两者处于对
位,故结构简式为
(6)参照上述合成路线,设计由 为原料合成 的路线(其他无机试剂任选)。
解析:分析原料和产物可知,首先要在苯环上引入硝基,苯首先和浓硝酸反应发生取代反应生成硝基苯,加入铁粉还原为氨基苯,然后
和 发生流程中反应⑥的原理生成产物,流程见答案。
同课章节目录