2024年中考数学高频考点突破——二次函数与周长
1.如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.
(1)求抛物线的表达式;
(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;
(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ与△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.
2.如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B,并与x轴交于另一点C,其顶点为P.
(1)求a,k的值;
(2)抛物线的对称轴上是否存在一点M,使△ABM的周长最小,若存在,求出△ABM的周长;若不存在,请说明理由;
(3)若以AB为直径画圆,与抛物线的对称轴交于点N,求出点N坐标.
3.如图,A,B两点在x轴的正半轴上运动,四边形是矩形,C,D两点在抛物线上.
(1)若,求矩形的周长;
(2)设,求出四边形的周长L关于m的函数表达式;
(3)在(2)的条件下求L的最大值.
4.已知抛物线=(≠0)与轴交于A B两点,与轴交于C点,其对称轴为=1,且A(-1,0) C(0,2).
(1)直接写出该抛物线的解析式;
(2)P是对称轴上一点,△PAC的周长存在最大值还是最小值 请求出取得最值(最大值或最小值)时点P的坐标;
(3)设对称轴与轴交于点H,点D为线段CH上的一动点(不与点C H重合).点P是(2)中所求的点.过点D作DE∥PC交轴于点E.连接PD PE.若CD的长为,△PDE的面积为S,求S与之间的函数关系式,试说明S是否存在最值,若存在,请求出最值,并写出S取得的最值及此时的值;若不存在,请说明理由.
5.如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.
①当矩形PQNM的周长最大时,求△ACM的面积;
②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点G,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请求出F点的坐标;若不存在,请说明理由.
6.如图1,已知抛物线与轴交于两点,与y轴交于点,顶点为,点是点关于对称轴的对称点,过点作轴交轴于点,交线段于点.
(1)连接,求的周长;
(2)如图2,点是线段上方抛物线上的一点,过作轴交轴于点,交线段于点,当四边形的面积最大时,在线段上有一动点,在线段上有一动点,在轴上有一动点,且满足,连接,求的最小值;
(3)如图3,将抛物线沿直线进行平移,平移过程中的点记为,点记为,连接所形成的直线与轴相交于点,请问是否存在这样的点,使得为等腰三角形?若存在,求出此时的长度,若不存在,请说明理由.
7.如图,已知二次函数 y=ax2+bx+c 的图象经过点 A(﹣4,0),B(﹣1,3),C(﹣3,3).
(1)求此二次函数的解析式
(2)设此二次函数的对称轴为直线 l,该图象上的点 P(m,n)在第三象限, 其关于直线 1 的对称点为 M,点 M 关于 y 轴的对称点为 N,若四边形 OAPN 的面积为 20,求 m,n 的值;
(3)在对称轴直线 l 上是否存在一点 D,使△ADC 的周长最短,如果存在,求出点 D 的坐标;如果不存在,请说明理由.
8.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)连接AC、BC,判断△ABC的形状,并证明;
(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.
9.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.
(1)求A,B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;
(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.
(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.
10.如图,抛物线y=﹣(其中m>0)与x轴分别交于A,B两点(A在B的右侧),与y轴交于点c.
(1)求△AOC的周长,(用含m的代数式表示)
(2)若点P为直线AC上的一点,且点P在第二象限,满足OP2=PC PA,求tan∠APO的值及用含m的代数式表示点P的坐标;
(3)在(2)的情况下,线段OP与抛物线相交于点Q,若点Q恰好为OP的中点,此时对于在抛物线上且介于点C与抛物线顶点之间(含点C与顶点)的任意一点M(x0,y0)总能使不等式n≤及不等式2n﹣恒成立,求n的取值范围.
11.抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)在抛物线上求一点P,使S△PAB=S△ABC,写出P点的坐标;
(3)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出点Q的坐标,若不存在,请说明理由.
12.如图,抛物线y=ax2+bx﹣2与y轴的交点为A,抛物线的顶点为B(1,﹣3).
(1)求出抛物线的解析式;
(2)点P为x轴上一点,当三角形PAB的周长最小时,求出点P的坐标;
(3)水平移动抛物线,新抛物线的顶点为C,两抛物线的交点为D,当O,C,D在一条直线上时,请直接写出平移的距离.
13.如图,抛物线与直线l:交于点A(4,2)、B(0,﹣1).
(1)求抛物线的解析式;
(2)点D在直线l下方的抛物线上,过点D作DE∥y轴交l于E、作DF⊥l于F,设点D的横坐标为t.
①用含t的代数式表示DE的长;
②设Rt△DEF的周长为p,求p与t的函数关系式,并求p的最大值及此时点D的坐标;
(3)点M在抛物线上,点N在x轴上,若△BMN是以M为直角顶点的等腰直角三角形,请直接写出点M的坐标.
14.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
15.如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A、B,CD是线段OB上的一动线段,且CD=2,过点C、D的两直线都平行于y轴,与抛物线相交于点F、E,连接EF.
(1)点A的坐标为 ,线段OB的长= ;
(2)设点C的横坐标为m.
①当四边形CDEF是平行四边形时,求m的值;
②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值.
16.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;
(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.
17.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
18.如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQNM的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
参考答案:
1.(1)y=﹣x2﹣2x+3(2)故四边形BDEF的周长最小时,点E的坐标为(﹣1,),点F坐标为(﹣1,),四边形BDEF周长的最小值是+1+;(3)点P的坐标为(﹣,)
【详解】试题分析:(1)将点A(-3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;
(2)先求得C(-1,4).将D点向下平移1个单位,得到点M,连结AM交对称轴于F,作DE∥FM交对称轴于E点,则四边形BDEF周长的最小值=BD+EF+AM,然后求得直线AM的解析式,从而可求得点F的坐标,最后依据EF=1可得到点E的坐标;
(3)当△PCQ∽△ACH时,∠PCQ=∠ACH.过点A作CA的垂线交PC与点F,作FN⊥x轴与点N.则AF∥PQ,先证明△CPQ∽△CFA、△FNA∽△AHC,依据相似三角形的性质可求得AN=2,FN=1,则F(-5,1),然后再求得直线CF的解析式,将CF的解析式与抛物线的解析式联立组成方程组可求得点P的坐标.
试题解析:
(1)解:∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),
∴ ,解得 ,
∴抛物线的解析式为y=﹣x2﹣2x+3
(2)解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点C(﹣1,4).
将D点向下平移1个单位,得到点M,连结AM交对称轴于F,作DE∥FM交对称轴于E点,如图1所示.
∵EF∥DM,DE∥FM,
∴四边形EFMD是平行四边形,
∴DE=FM,EF=DM=1,
DE+FB=FM+FA=AM.
由勾股定理,得AM= = = ,
BD== = ,
四边形BDEF周长的最小值=BD+DE+EF+FB=BD+EF+(DE+FB)=BD+EF+AM= +1+ ;
设AM的解析式为y=mx+n,将A(﹣3,0),M(0,2)代入,解得m=,n=2,则AM的解析式为y= x+2,
当x=﹣1时,y=,即F(﹣1,),
由EF=1,得E(﹣1,).
故四边形BDEF的周长最小时,点E的坐标为(﹣1,),点F坐标为(﹣1,),四边形BDEF周长的最小值是 +1+ ;
(3)解:点P在对称轴左侧,当△PCQ∽△ACH时,∠PCQ=∠ACH.
过点A作CA的垂线交PC与点F,作FN⊥x轴与点N.则AF∥PQ,
∴△CPQ∽△CFA,
∴ = =2.
∵∠CAF=90°,
∴∠NAF+∠CAH=90°,∠NFA+∠NAF=90°,
∴∠BFA=∠CAH.
又∵∠FNA=∠AHC=90°,
∴△FNA∽△AHC,
∴ == =,即 = =.
∴AN=2,FN=1.
∴F(﹣5,1).
设直线CF的解析式为y=kx+b,将点C和点F的坐标代入得: ,解得:k= ,b= .
∴直线CF的解析式为y= x+ .
将y= x+ 与y=﹣x2﹣2x+3联立得: ,
解得: 或 (舍去).
∴P(﹣,).
∴满足条件的点P的坐标为(﹣,).
点睛: 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、相似三角形的性质和判定、轴对称的性质,找出四边形BDEF周长取得最小值的条件是解题的关键.
2.(1)a,k的值分别为1,﹣1;(2),理由见解析;(3)点N的坐标为(2,2)或(2,1)
【详解】分析:(1)由条件可先求得A、B坐标,代入抛物线解析式可求得a、k的值;
(2)由A、C关于对称轴对称,连接BC交对称轴于点M,则M即为所求,由B、C可求得直线BC的解析式,可求得M点的坐标,容易求得其周长;
(3)可设N点坐标为(2,n),可分别表示出AB、AN、BN的长,由勾股定理可得到关于n的方程,可求得N点坐标.
详解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,
∴A(1,0),B(0,3).
又∵抛物线抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),
∴
解得
故a,k的值分别为1,﹣1;
(2)如图1,存在这样的点M.连接BC与对称轴x=2的交点即为M点,这时△ABM的周长最小.
由抛物线对称性可得,点C坐标为(3,0),
△ABM的周长=AB+AM+BM
=AB+BC
=;
(3)如图2,由题意,可设N点的坐标为(2,n),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.
∵AB为所作圆的直径,N为所作圆与直线x=2的交点,
∴∠ANB=90°.
在Rt△ANF中,AN2=AF2+NF2=1+n2,
在Rt△BNE中,BN2=BE2+EN2=4+(3﹣n)2,
由勾股定理,得到方程1+n2+4+(3﹣n)2=12+32,
化简,得n2﹣3n +2=0,
解得 n1=2,n2=1,
∴点N的坐标为(2,2)或(2,1).
点睛:属于二次函数的综合题,此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
3.(1)26;
(2);
(3)34.
【分析】(1)根据自变量与函数值的对应关系,可得D点坐标,根据矩形的周长公式,可得答案;
(2)求L与m的函数解析式就是把m当作已知量,求L,先求,它的长就是D点的纵坐标,再把D点纵坐标代入函数解析式求C点横坐标,C点横坐标与D点横坐标的差就是线段的长,用,建立函数关系式;
(3)根据二次函数的性质,可得答案.
【详解】(1)解:当时,,即,D点坐标为.
当时,,
解得,
即,
矩形的周长;
(2)解:把代入抛物线中,得,
把代入抛物线中,得
,
解得,
∴C的横坐标是,故,
∴矩形的周长是,
即.
(3)解:化为顶点式,得
,
当时,L的最大值是34,
在(2)的条件下求L的最大值是34.
【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系得出的长;解(2)的关键是利用自变量与函数值的对应关系得出得出C点的横坐标;解(3)的关键是利用二次函数的性质.
4.(1) =-++2;(2) P(1,);(3)见解析.
【分析】(1)由已知条件易得点B的坐标为(3,0),这样结合点A、C的坐标即可求得抛物线的解析式;
(2)由题意可知,AC长度是固定值,点A和点B关于直线x=1对称,由此可得连接BC交直线x=1于点P,此时△PAC的周长最小,求得直线BC的解析式,即可求得此时点P的坐标;
(3)如图2,画出符合题意的图形,过点D作DF⊥y轴于点F,交对称轴x=1于点N,在Rt△OCH中易得CH=,由Rt△CDF∽Rt△CHO,可将CF、OF和FD用含m的代数式表达出来,从而可表达出点D和点N的坐标,再用待定系数法求得用含m的代数式表达的DE的解析式,即可表达出点E的坐标和点Q的坐标,然后由S=S△PDE=S△PDQ+S△PEQ=即可得到S与m间的函数关系式,将所得解析式化简、配方即可得到所求答案.
【详解】解:(1)∵抛物线=(≠0)与轴交于A B两点,其对称轴为=1,且A(-1,0),
∴点B的坐标为(3,0),
∴可设抛物线解析式为:,
∵抛物线和y轴交于点C(0,2),
∴,解得:,
∴,即;
(2)△PAC的周长有最小值,连结AC BC,
∵AC的长度一定,
∴要使△PAC的周长最小,就是使PA+PC最小.
∵点A关于对称轴=1的对称点是B点,
∴BC与对称轴的交点即为所求的点P(如图2),
设直线BC的表达为:=,则有
,解得,∴:=-+2,
把=1代入,得=,
即点P的坐标为P(1,),
∴△PAC的周长取得最小值,取得最小值时点P的坐标为P(1,);
(3)如图2,设DE对称轴x=1于点Q,
在Rt△COH中,由勾股定理得CH===.
过点D作DF⊥轴于点F,交对称轴=1于点N,
∵Rt△CDF∽Rt△CHO,
∴,
∴CF===,OF=CO-CF=2-;
同样: ,FD===,
∴点D的坐标为D(,2-),
∴N(1,2-).
∵DE∥BC,
∴可设(过点D E的直线):=-+,
把D点坐标代入其中,得- +=2-,
解得=2-,
∴:=-+2-,
点E的纵坐标为0,代入其中,解得=3-,
∴E(3-,0).
∵点Q在对称轴=1上,把=1代入中,解得=-,
∴Q(1,-).
PQ=-(-)=,DN=1-,
EH=3--1=2-.
S=S△PDE=S△PDQ+S△PEQ=PQ·DN+PQ·EH
=PQ(DN+EH)=·(1-+2-),
化简得S=-+,
可知S是关于的二次函数.
S存在最大值.
配方可得:S=-+,由此可得,S取得最大值为,
取得最大值时的值为:=.
点睛:本题是一道二次函数与几何图形的综合题,第1和第2小题比较简单;第3小题难点较大,画出符合题意的图形,作出如图所示的辅助线,借助于△CDF∽△CHO,利用相似三角形的性结合题中的已知条件,把点D、E、Q的坐标用含m的代数式表达出来是解决第3小题的关键.
5.(1)y=﹣x2﹣2x+3;(2)①,②F1(﹣1,4),F2(,),F3(,).
【详解】分析:(1)先求出A、B两点的坐标,再代入抛物线y=﹣x2+bx+c求出b、c的值即可;
(2)①先用m表示出PM的长,再求出抛物线的对称轴及PQ的长,利用矩形的面积公式可得出其周长的解析式,进而可得出矩形面积的最大值,求出C点坐标,由三角形的面积公式即可得出结论;
②根据C点坐标得出P点坐标,故可得出PC的长,再分点F在点G的上方与点F在点G的下方两种情况进行讨论即可.
详解:(1)∵直线y=x+3与x轴交于点A,与y轴交于点B,∴A(﹣3,0),B(0,3).
∵抛物线y=﹣x2+bx+c经过A、B两点,∴,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3;
(2)①∵点P的横坐标为m,∴P(m,﹣m2﹣2m+3),PM=﹣m2﹣2m+3.
∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣=﹣=﹣1,∴PQ=2(﹣1﹣m)=﹣2m﹣2,∴矩形PQMN的周长=2(PM+PQ)=2(﹣m2﹣2m+3﹣2m﹣2)=﹣2m2﹣8m+2=﹣2(m+2)2+10,当m=﹣2时,矩形PQMN的周长最大,此时点C的坐标为(﹣2,1),CM=AM=1,∴S△ACM=×1×1=;
②∵C(﹣2,1),∴P(﹣2,3),∴PC=3﹣1=2.
∵点P、C、G、F为顶点的四边形是平行四边形,GF∥y轴,∴GF∥PC,且GF=PC.
设G(x,x+3),则F(x,﹣x2﹣2x+3),当点F在点G的上方时,﹣x2﹣2x+3﹣(x+3)=2,解得x=﹣1或x=﹣2(舍去),当x=﹣1时,﹣x2﹣2x+3=4,即F1(﹣1,4);
当点F在点G的下方时,x+3﹣(﹣x2﹣2x+3)=2,解得:x=或x=.
当x=时,﹣x2﹣2x+3=;
当x=时,﹣x2﹣2x+3=,
故F2(),F3().
综上所示,点F的坐标为F1(﹣1,4),F2(),F3().
点睛:本题考查的是二次函数综合题,涉及到平行四边形的判定与性质、矩形的判定与性质及二次函数图象上点的坐标特点等知识,在解答(3)时要先判断出平行四边形的边,再由平行四边形的性质求解.
6.(1) ;(2)最小值=;(3)OG=或.
【详解】分析:(1)根据解析式求得A、B、C的坐标,进而求得D的坐标,再求出直线AC的解析式,进而求得点E的坐标,分别求出△DCE的边长,从而得解;
(2) 设,求出即可得解.
(3)进行分类讨论即可.
详解:(1)可得, 对称轴= -1
AC:
(2)设
当PQ最大时,四边形面积最大
当 此时面积最大,
将AM向MN方向平移个单位得到
过轴作的对称点,连接,交DG于点N,交y轴于点E,过N作MN∥于轴交PH于点M,
此时最小,最小值=
(3)过点D’作D’E⊥轴
D点的运动轨迹平行于AC,
∵∠DCA=60° DC∥
∴∠CG=60° ∠AG=120°
∵∠CAO=30°
∴ ∠=30°
∵∠=90°
∴D’E=
∴
①时, ∴OG=0(舍)
②时, ∴OG=
③时, ∴OG=
综上所述:OG=或.
点睛:考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,
7.(1)y=﹣x2﹣4x;(2)m 的值为﹣5,n 的值为﹣5;(3)在对称轴直线 l 上存在一点 D,使△ADC 的周长最短,点 D 的坐标为(﹣2, 2).
【分析】(1)根据点 A、B、C 的坐标,利用待定系数法即可求出二次函数的解析式;
(2)利用配方法找出二次函数的对称轴,由点 P 的坐标可得出点 M、N 的坐标,利用梯形的面积公式结合四边形 OAPN 的面积为 20,可求出 n 值,再利用二次函数图象上点的坐标特征可求出 m 的值;
(3)连接 AB,交直线 l 于点 D,利用两点之间线段最短可得出点 D 即为所求, 根据点 A、B 的坐标,利用待定系数法可求出直线 AB 的解析式,再利用一次函数图象上点的坐标特征可求出点 D 的坐标.
【详解】解:(1)将 A(﹣4,0)、B(﹣1,3)、C(﹣3,3)代入 y=ax2+bx+c 中,
得: ,解得: ,
∴二次函数的解析式为 y=﹣x2﹣4x.
(2)∵二次函数的解析式为 y=﹣x2﹣4x=﹣(x+2)2+4,
∴二次函数的对称轴为直线 x=﹣2.
∵点 P(m,n)关于直线 1 的对称点为 M,点 M 关于 y 轴的对称点为 N,
∴点 M(﹣4﹣m,n),点 N(m+4,n)(如图 1),
∴S 四边形 OAPN=(OA+PN) |n|= (4+4)|n|=20, 解得:n1=5,n2=﹣5.
∵点 P(m,n)在第三象限,
∴n=﹣5,
∴﹣m2﹣4m=﹣5,
解得:m1=﹣5,m2=1(舍去).
∴m 的值为﹣5,n 的值为﹣5.
(3)∵AC 的值为定值,
∴要使△ADC 的周长最短,则 AD+CD 的值最小.
连接 AB,交直线 l 于点 D,则 BD=CD,此时由两点之间线段最短可得知,点 D
即为所求(如图 2).
设直线 AB 的解析式为 y=kx+d(k≠0),
将 A(﹣4,0)、B(﹣1,3)代入 y=kx+d 中,
得: ,解得: ,
∴直线 AB 的解析式为 y=x+4, 当 x=﹣2 时,y=x+4=2,
∴点 D 的坐标为(﹣2,2).
∴在对称轴直线 l 上存在一点 D,使△ADC 的周长最短,点 D 的坐标为(﹣2, 2).
【点睛】考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及梯形的面积,解题的关键是:(1)由点的坐标,利用待定系数法求出二次函数解析式;(2)利用梯形的面积求出 n 值;(3)利用抛物线的对称性确定点 D 的位置.
8.(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小
【分析】(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;
(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;
(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.
【详解】(1)抛物线的解析式为y=a(x+4)(x﹣1),
即y=ax2+3ax﹣4a,
∴﹣4a=2,解得a=﹣,
∴抛物线解析式为y=﹣x2﹣x+2;
(2)△ABC为直角三角形.理由如下:
当x=0时,y=﹣x2﹣x+2=2,则C(0,2),
∵A(﹣4,0),B (1,0),
∴AC2=42+22,BC2=12+22,AB2=52=25,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,∠ACB=90°;
(3)
抛物线的对称轴为直线x=﹣,
连接AC交直线x=﹣于P点,如图,
∵PA=PB,
∴PB+PC=PA+PC=AC,
∴此时PB+PC的值最小,△PBC周长最小,
设直线AC的解析式为y=kx+m,
把A(﹣4,0),C(0,2)代入得,解得,
∴直线AC的解析式为y=x+2,
当x=﹣时,y=x+2=,则P(﹣,)
∴当P点坐标为(﹣,)时,△PBC周长最小.
【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.
9.(1)y=﹣x﹣1;(2)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).
【分析】(1)令抛物线y=x2-2x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;
(2)设P点的横坐标为x(-1≤x≤2),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;
(3)根据D点关于PE的对称点为点C(2,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-2x+1,进而求出最小值和点M,N的坐标;
(4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图2,此时可以求出F点的两个坐标.
【详解】解:(1)令y=0,解得或x2=3,
∴A(﹣1,0),B(3,0);
将C点的横坐标x=2代入y=x2﹣2x﹣3得
∴C(2,-3),
∴直线AC的函数解析式是
(2)设P点的横坐标为x(﹣1≤x≤2),
则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),
∵P点在E点的上方,
∴当时,PE的最大值
△ACE的面积最大值
(3)D点关于PE的对称点为点C(2,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),
连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,
最小值
求得M(1,﹣1),
(4)存在如图1,若AF∥CH,此时的D和H点重合,CD=2,则AF=2,
于是可得F1(1,0),F2(﹣3,0),
如图2,根据点A和F的坐标中点和点C和点H的坐标中点相同,
再根据|HA|=|CF|,
求出
综上所述,满足条件的F点坐标为F1(1,0),F2(﹣3,0),,.
【点睛】属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.
10.(1) 3m+3m;(2)tan∠APO=,P(﹣);(3) ≤n≤2.
【分析】(1)分别令x=0和y=0,计算抛物线与两坐标轴的交点C和A的坐标,再根据勾股定理计算AC的长,根据三角形的周长可得结论;
(2)根据特殊三角函数值可得∠CAO=30°,证明△OPA∽△CPO,则∠POC=∠OAC=30°,可得tan∠APO=,过P作PE⊥x轴于E,表示OE和PE的长,根据点P在第二象限,可得P的坐标;
(3)根据中点坐标公式可得Q的坐标,代入抛物线的解析式可得m的值,计算对称轴,得x0的取值范围,根据两个不等式确定其解集即可.
【详解】(1)当x=0时,y=﹣××(﹣3m)=m,∴C(0,m),∴OC=m,当y=0时,﹣=0,解得:x1=﹣,x2=3m.
∵A在B的右侧,其中m>0,∴A(3m,0),由勾股定理得:AC===2m,∴△AOC的周长=OA+OC+AC=3m+m+2m=3m+3m;
(2)Rt△AOC中,tan∠OAC===,∴∠CAO=30°.
∵OP2=PC PA,∴.
∵∠OPC=∠OPC,∴△OPA∽△CPO,∴∠POC=∠OAC=30°.
∵∠ACO=∠POC+∠APO,∴∠APO=60°﹣30°=30°,∴tan∠APO=.
过P作PE⊥x轴于E.
∵∠APO=∠OAC=30°,∴PO=OA=3m,∠POE=60°,Rt△PEO中,∠EPO=30°,∴OE=OP=,PE=.
∵点P在第二象限,∴P(﹣);
(3)由(2)知:P(﹣).
∵点Q恰好为OP的中点,∴Q(﹣).
∵Q在抛物线上,则=﹣,解得:m=,∴抛物线的解析式为:y=﹣(x+)(x﹣3)=﹣,对称轴是:x=﹣=,作抛物线的对称轴交抛物线于点F.
∵M在点C与顶点F之间(含点C与顶点F),∴0≤x0≤,n≤,设w1=.
∵1>0,∴w1随x0的增大而增大,∴当x0=时,w1有最大值,即有最小值为2,∴n≤2,对于不等式2n﹣,n≥﹣2,n≥﹣2(x0﹣)2+,设w2=﹣2(x0﹣)2+.
∵﹣2<0,∴w2有最大值.
∵0<<,∴当x0=时,w2有最大值为,∴n≥.
综上所述:n的取值范围是≤n≤2.
【点睛】本题是二次函数综合题.考查了相似三角形的判定和性质、抛物线与两坐标轴的交点、勾股定理、不等式的解及函数的增减性等知识,有难度,计算量大,解题的关键是学会利用参数解决问题,属于中考压轴题.
11.(1)y=﹣x2﹣2x+3;(2)所求P点的坐标为(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3);(3)点Q的坐标是(﹣1,2).
【分析】(1)将A(-3,0),B(1,0)两点代入y=-x2+bx+c,利用待定系数法求解即可求得答案;
(2)首先求得点C的坐标为(0,3),然后根据同底等高的两个三角形面积相等,可得P点的纵坐标为±3,将y=±3分别代入抛物线的解析式,求出x的值,即可求得P点的坐标;
(3)根据两点之间线段最短可得Q点是AC与对称轴的交点.利用待定系数法求出直线AC的解析式,将抛物线的对称轴方程x=-1代入求出y的值,即可得到点Q的坐标.
【详解】(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,
∴,解得,
∴抛物线的解析式为:y=﹣x2﹣2x+3;
(2)∵y=﹣x2﹣2x+3,
∴x=0时,y=3,
∴点C的坐标为(0,3).
设在抛物线上存在一点P(x,y),使S△PAB=S△ABC,
则|y|=3,即y=±3.
如果y=3,那么﹣x2﹣2x+3=3,解得x=0或﹣2,
x=0时与C点重合,舍去,所以点P(﹣2,3);
如果y=﹣3,那么﹣x2﹣2x+3=﹣3,解得x=﹣1±,
所以点P(﹣1±,﹣3);
综上所述,所求P点的坐标为(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3);
(3)连结AC与抛物线的对称轴交于点Q,此时△QBC的周长最小.
设直线AC的解析式为:y=mx+n,
∵A(﹣3,0),C(0,3),
∴,解得:,
∴直线AC的解析式为:y=x+3.
∵y=﹣x2﹣2x+3的对称轴是直线x=﹣1,
∴当x=﹣1时,y=﹣1+3=2,
∴点Q的坐标是(﹣1,2).
【点睛】此题考查了抛物线与x轴的交点,待定系数法求函数的解析式,二次函数的性质,三角形的面积以及轴对称-最短路线问题.正确求出函数的解析式是解此题的关键.
12.(1) y=(x﹣1)2﹣3=x2﹣2x﹣2 (2) P(,0) (3) 平移距离为2或3
【分析】(1)根据题意可得点A的坐标为(0,﹣2),根据顶点坐标为(1,﹣3),可得设抛物线解析式y=a(x﹣1)2﹣3把A点的坐标代入求得a值,即可得抛物线的解析式;(2)当PA+PB最小时,△ABP的周长最小,作A点关于x轴的对称点A'(0,2),连接A'B,用待定系数法求得直线A'B的解析式,直线A'B与x轴的交点坐标即为点P的坐标;(3)设抛物线向右平移m个单位,得到新的抛物线的顶点C(1+m,-3),由此可得新抛物线的解析式,把两个抛物线的解析式联立组成方程组,解方程组求得点D的坐标,再求得直线OC的解析式,因O、C、D三点共线,可得以m为未知数的方程,解方程求得m的值即可.
【详解】(1)根据题意得:A(0,﹣2),
设抛物线解析式y=a(x﹣1)2﹣3过点A(0,﹣2),
∴﹣2=a﹣3,
∴a=1,
∴抛物线解析式y=(x﹣1)2﹣3=x2﹣2x﹣2;
(2)∵A(0,﹣2),B(1,﹣3),
∴AB=,
∵△ABP的周长=PA+PB+AB=PA+PB+,
∴当PA+PB最小时,△ABP的周长最小;
作A点关于x轴的对称点A'(0,2),连接A'B,
设直线A'B解析式y=kx+b,
根据题意得:,
解得:k=﹣5,b=2
∴直线A'B的解析式y=﹣5x+2;
当y=0时,x=,
∴P(,0);
(3)设向右平移m个单位长度,则所得新的抛物线的顶点C(1+m,-3),
∴平移后抛物线解析式y=(x﹣1﹣m)2﹣3,
∴C(1+m,﹣3),
∴根据题意可得,
∴,
∴D(1+,);
∵C(1+m,﹣3,),O(0,0),
∴直线CO解析式y=x,
∵O,C,D三点共线,
∴=,
解得:m1=0(不合题意舍去),m2=﹣3,m3=2;
∴向右平移2个单位长度,或向左平移3个单位长度,O,C,D三点共线.
∴平移距离为2或3.
【点睛】本题考查了待定系数法求函数的解析式,二次函数的性质,平移的性质,解一元二次方程,轴对称-最短距离问题,熟练掌握二次函数的性质是解题的关键.
13.(1)y=x2﹣x﹣1;(2)①DE=﹣t2+2t(0<t<4);②p与t的函数关系式为p=﹣(t﹣2)2+(0<t<4),当t=2时,pmax=,此时D(2,﹣);(3)点M的坐标为(,),(,),(,﹣),(,﹣).
【分析】(1)将A,B两点坐标代入抛物线解析式求解即可;
(2)①根据D,E分别在抛物线和直线上,则可设D(t,t2﹣t﹣1),E(t,t﹣1),然后求出DE长即可;
②首先求出直线AB与x轴交于G(,0),利用勾股定理求出BG=,则△OBG的周长为4,易证△GBO∽△DEF,再利用相似三角形的性质即可得到p与t的函数关系式,然后求出p最大值时t的值即可得到D的坐标;
(3)以点M在y轴左侧为例,如图,过M作x轴的垂线,设垂足为R,过点B作MR的垂线,设垂足为S,通过“角边角”证明△MNR≌△BMS,则MR=BS=OR,故可设M(a,±a),然后代入抛物线解析式求出a的值即可.
【详解】(1)由题意,知:
,
解得,
故抛物线的解析式为y=x2﹣x﹣1;
(2)①D在y=x2﹣x﹣1上,E在,
可设D(t,t2﹣t﹣1),E(t,t﹣1),
则DE=t﹣1﹣(t2﹣t﹣1)=﹣t2+2t(0<t<4);
②∵在y=x﹣1中,令y=0得x=,
∴直线AB与x轴交于G(,0),
∴BG==,
∴△OBG的周长为1++=4;
∵DE∥y轴,
∴△GBO∽△DEF,
∴,
∴p=﹣t2+t=﹣(t﹣2)2+(0<t<4),
∴当t=2时,pmax=,此时D(2,﹣);
(3)以点M在y轴左侧为例,如图,
过M作x轴的垂线,设垂足为R,过点B作MR的垂线,设垂足为S,
在△MNR与△BMS中,
,
∴△MNR≌△BMS(ASA),
∴MR=BS=OR;
则可设M(a,±a),
当点M的坐标为(a,a)时,有:
a2﹣a﹣1=a,解得:a=;
当点M的坐标为(a,﹣a)时,有:
a2﹣a﹣1=﹣a,解得:a=;
综上,点M的坐标为(,),(,),(,﹣),(,﹣).
14.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);
(3)符合条件的点P的坐标为(,)或(,﹣),
【分析】(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;
(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;
(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=- x+b,把C点坐标代入求出b得到直线PC的解析式为y=- x+3,再解方程组 得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.
【详解】(1)设抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
当x=0时,y=﹣x2+2x+3=3,则C(0,3),
设直线AC的解析式为y=px+q,
把A(﹣1,0),C(0,3)代入得,解得,
∴直线AC的解析式为y=3x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点D的坐标为(1,4),
作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),
∵MB=MB′,
∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,
而BD的值不变,
∴此时△BDM的周长最小,
易得直线DB′的解析式为y=x+3,
当x=0时,y=x+3=3,
∴点M的坐标为(0,3);
(3)存在.
过点C作AC的垂线交抛物线于另一点P,如图2,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=﹣x+b,
把C(0,3)代入得b=3,
∴直线PC的解析式为y=﹣x+3,
解方程组,解得或,则此时P点坐标为(,);
过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,
把A(﹣1,0)代入得+b=0,解得b=﹣,
∴直线PC的解析式为y=﹣x﹣,
解方程组,解得或,则此时P点坐标为(,﹣).
综上所述,符合条件的点P的坐标为(,)或(,﹣).
【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.
15.(1) A(4,0),5;(2)①;②当m=时,△ACD的周长最小,这个最小值为8.
【分析】(1)根据y=x2﹣4x中,令y=0,则0=x2﹣4x,可求得A(4,0),解方程组,可得B(5,5),进而得出OB的长;
(2)①根据C(m,m),F(m,m2﹣4m),可得CF=m﹣(m2﹣4m),根据D(m,m),E(m,(m)2﹣4(m)),可得DE=m[(m)2﹣4(m)],最后根据当四边形CDEF是平行四边形时,CF=DE,求得m的值即可;
②先过点A作CD的平行线,过点D作AC的平行线,交于点G,则四边形ACDG是平行四边形,得出AC=DG,再作点A关于直线OB的对称点A',连接A'D,则A'D=AD,根据当A',D,G三点共线时,A'D+DG=A'G最短,可得此时AC+AD最短,然后求得直线A'G的解析式为yx+4,解方程组可得D、C的坐标,最后根据两点间距离公式,求得△ACD的周长的最小值.
【详解】(1)∵y=x2﹣4x中,令y=0,则0=x2﹣4x,
解得:x1=0,x2=4,
∴A(4,0),解方程组,
可得:或,
∴B(5,5),
∴OB.
故答案为(4,0),5;
(2)①∵点C的横坐标为m,且CF∥DE∥y轴,
∴C(m,m),F(m,m2﹣4m).
又∵CD=2,且CD是线段OB上的一动线段,
∴D(m,m),E(m,(m)2﹣4(m)),
∴CF=m﹣(m2﹣4m),DE=m[(m)2﹣4(m)].
∵当四边形CDEF是平行四边形时,CF=DE,
∴m﹣(m2﹣4m)=m[(m)2﹣4(m)],
解得:;
②如图所示,过点A作CD的平行线,过点D作AC的平行线,交于点G,则四边形ACDG是平行四边形,
∴AC=DG,
作点A关于直线OB的对称点A',连接A'D,则A'D=AD,
∴当A',D,G三点共线时,A'D+DG=A'G最短,此时AC+AD最短.
∵A(4,0),AG=CD=2,
∴A'(0,4),G(4),
设直线A'G的解析式为y=kx+b,则,
解得:,
∴直线A'G的解析式为yx+4,
解方程组,
可得:,
∴D(,).
∵CD=2,且CD是线段OB上的一动线段,
∴C(,),
∴点C的横坐标m=.
∵AD=A'D,AC=DG,CD=AG=2,
∴△ACD的最小值为A'G+AG==6+2=8,
故当m=时,△ACD的周长最小,这个最小值为8.
【点睛】本题属于二次函数综合题,主要考查了函数图象的交点坐标的计算,两点间的距离公式,待定系数法求函数解析式以及平行四边形的性质的综合应用,解决问题的关键是根据平行四边形的对边相等以及两点之间线段最短进行计算求解.解题时注意方程思想和数形结合思想的运用.
16.(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3.
【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.
【详解】(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:
,解得:,
∴抛物线的函数关系式为y=﹣x2﹣2x+3;
设直线AC的函数关系式为y=mx+n(m≠0),
将A(1,0),C(﹣2,3)代入y=mx+n,得:
,解得:,
∴直线AC的函数关系式为y=﹣x+1.
(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.
设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),
∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.
∵点C的坐标为(﹣2,3),
∴点Q的坐标为(﹣2,0),
∴AQ=1﹣(﹣2)=3,
∴S△APC=AQ PF=﹣x2﹣x+3=﹣(x+)2+ .
∵﹣<0,
∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣, ).
(3)当x=0时,y=﹣x2﹣2x+3=3,
∴点N的坐标为(0,3).
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的对称轴为直线x=﹣1.
∵点C的坐标为(﹣2,3),
∴点C,N关于抛物线的对称轴对称.
令直线AC与抛物线的对称轴的交点为点M,如图2所示.
∵点C,N关于抛物线的对称轴对称,
∴MN=CM,
∴AM+MN=AM+MC=AC,
∴此时△ANM周长取最小值.
当x=﹣1时,y=﹣x+1=2,
∴此时点M的坐标为(﹣1,2).
∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),
∴AC= =3,AN= =,
∴C△ANM=AM+MN+AN=AC+AN=3+.
∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.
【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣x2﹣x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.
17.(1)y=-x2+2x+3.(2)P的坐标(1,2).(3)存在.点M的坐标为(1,),(1,-),(1,1),(1,0).
【分析】(1)可设交点式,用待定系数法求出待定系数即可.
(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.
(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解
【详解】(1)∵A(-1,0)、B(3,0)经过抛物线y=ax2+bx+c,
∴可设抛物线为y=a(x+1)(x-3).
又∵C(0,3) 经过抛物线,∴代入,得3=a(0+1)(0-3),即a=-1.
∴抛物线的解析式为y=-(x+1)(x-3),即y=-x2+2x+3.
(2)连接BC,直线BC与直线l的交点为P. 则此时的点P,使△PAC的周长最小.
设直线BC的解析式为y=kx+b,
将B(3,0),C(0,3)代入,得:
,解得:.
∴直线BC的函数关系式y=-x+3.
当x-1时,y=2,即P的坐标(1,2).
(3)存在.点M的坐标为(1,),(1,-),(1,1),(1,0).
∵抛物线的对称轴为: x=1,
∴设M(1,m).
∵A(-1,0)、C(0,3),
∴MA2=m2+4,MC2=m2-6m+10,AC2=10.
若MA=MC,则MA2=MC2,得:m2+4=m2-6m+10,得:m=1.
②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±.
③若MC=AC,则MC2=AC2,得:m2-6m+10=10,得:m=0,m=6,
当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去.
综上可知,符合条件的M点,且坐标为(1,),(1,-),(1,1),(1,0).
【点睛】本题考查了二次函数的几何应用,等腰三角形的存在性问题,需要数形结合、分类讨论,难度较大.
18.(1)A(-3,0),B(1,0),C(0,3); (2);(3)或(1,0).
【详解】试题分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标;
(2)设M点横坐标为m,则PM=,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=,将配方,由二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积;
(3)设F(n,),由已知若FG=DQ,即可求得.
试题解析:解:(1)由抛物线可知,C(0,3),令y=0,则,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);
(2)由抛物线可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=()×2==,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=AM EM=;
(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入,解得y=4,∴D(﹣1,4),∴DQ=DC=,∵FG=DQ,∴FG=4,设F(n,),则G(n,n+3),∵点G在点F的上方,∴=4,解得:n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).
考点:1.二次函数综合题;2.代数几何综合题;3.压轴题.