10.5用二元一次方程组解决问题--行程问题
一、选择题.
1.甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
2.一辆汽车从地驶往地,前路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为,在高速公路上行驶的速度为,汽车从地到地一共行驶了.设普通公路长、高速公路长分别为,则可列方程组为( )
A. B. C. D.
3.某船顺流航行的速度为a,逆流航行的速度为b,则水流速度为( )
A. B. C. D.以上都不对
4.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了,下坡用了,根据题意可列方程组( )
A. B.
C. D.
5.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是( )
A. B.
C. D.
6.小林沿着笔直的公路靠右匀速行走,发现每隔5分钟从背后驶过一辆101路公交车,每隔3分钟从迎面驶来一辆101路公交车.假设每个每辆101路公交车行驶速度相同,而且101路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( )
A.3分钟 B.3.75分钟 C.4分钟 D.5分钟
7.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是( )
A.14和6 B.24和16 C.28和12 D.30和10
8.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是( )
A.26千米,2千米 B.27千米,1千米
C.25千米,3千米 D.24千米,4千米
9.从甲地到乙地有一段上坡路与一段下坡路.如果上坡平均每小时走2km,下坡平均每小时走3km,那么从甲地走到乙地需要15分钟,从乙地走到甲地需要20分钟.若设从甲地到乙地上坡路程为xkm,下坡路程为ykm,则所列方程组正确的是( )
A. B.
C. D.
10.某人要在规定的时间内由甲地赶往乙地,如果他以每小时30千米的速度行驶,就会迟到30分钟;如果他以每小时50千米的速度行驶,那么可提前30分钟到达乙超.则从甲地到乙地规定的时间为( )
A.1小时 B.2小时 C.3小时 D.4小时
填空题
11.一铁路大桥长1800米,一列火车从桥上通过,测得火车从开始上桥到完全离开桥共用分钟,整列火车完全在桥上的时间为分钟,则火车的速度为________米/秒.
12.A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.
13.、两个码头相距140千米,一艘轮船在其间航行,顺流用了5小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时______千米.
14.21年4月4日,双语实验学校组织全校师生前往烈士陵园,开展缅怀革命先烈,传承红色精神的主题活动.已知队伍全长450米,以90米/分的速度匀速前进.王平同学要从排尾到排头取东西,并立即返回排尾,且速度为180米/分.则他往返共需___分钟.
15.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时,该轮船在静水中的速度为______千米/小时.
16.甲、乙二人都以不变的速度在环形跑道上跑步,如果同时同地出发,相向而行,每隔分钟相遇一次;如果同向而行,每隔分钟相遇一次.已知甲比乙跑得快,则甲每分钟跑______圈.
17.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的_____倍.
18.甲、乙两码头相距180km,某轮船从甲码头顺流航行到乙码头需要5h,返回时需要6h,那么这条河的水流速度是________.
三、解答题
19.一辆汽车从A地驶往B地,前三分之一路段为普通公路,其余路段为高速路,已知汽车在普通公路上的速度为60km/h,在高速公路上的速度为100km/h,汽车从A地到B地一共行驶了2.2h,请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.
20.列二元一次方程组解应用题:
①、小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?
②、在疫情防控期间,某中学为保障广大师生生命健康安全,预从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元.
(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?
(2)若商场有两种促销方案:方案一,所有购买商品均打九折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?
21.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米
22.甲、乙两人环绕长为400米的环形跑道散步,如果两人同地出发背向而行,那么经过2分钟相遇;若两人同地出发同向而行,那么经过20分钟两人相遇,如甲的速度比乙快,求两人散步速度各是多少
23.甲、乙两人沿400m的环形跑道同时同地出发跑步.如果同向而行,那么经过200s两人相遇;如果背向而行,那么经过40s两人相遇.若设甲的跑步速度为m/s,乙的跑步速度m/s(),求,的值.
24.某铁路桥长,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了,整列火车完全在桥上的时间共.求火车的速度和长度.
答案
一、选择题
C.C.B.B.D.B.A.B.C.B.
填空题
11. 20.
12.17.
13.21.
14..
15.12
16..
17.2.
18..
三、解答题
19.
提出问题为:A地到B地的路程是多少千米?
设A地到B地的普通公路长x千米,高速公路长y千米,
根据题意得: ,
解得: ,
∴x+y=180.
答:A地到B地的路程是180千米.
20.
解:①设小颖上坡用了分钟,下坡用了分钟,
依题意得:,
解得:.
答:小颖上坡用了11分钟,下坡用了5分钟.
②(1)设每瓶免洗手消毒液和每瓶84消毒液的价格分别是元、元,
,
解得,
即每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;
(2)方案一的花费为:(元,
方案二的花费为:(元,
(元,,
答:学校选用方案二更节约钱,节约122元.
21.
解:设预定时间是x小时,学校到县城的距离是y千米,由题意得
,
解得:.
答:学校到县城的距离是12.5千米.
22.
设甲速度x米/分,乙速度y米/分,则由题意得:
,
解得:
答:甲、乙两人散步的速度分别是110米/分和90米/分.
23.
解:由题意可得:
解得:
答:x的值为6,y的值为4.
24.
解:设火车的速度为x米/秒,火车的长度为y米,由题意,得
,
解得:.
答:火车的速度为20米/秒,火车的长度为200米.