北师大版七年级数学上册2.8 有理数的除法导学案

文档属性

名称 北师大版七年级数学上册2.8 有理数的除法导学案
格式 zip
文件大小 25.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2015-07-02 10:06:10

图片预览

文档简介

第二章 有理数及其运算
第八节 有理数的除法
【学习目标】
1.理解有理数倒数的意义,不求一个数的倒数;
2.掌握有理数的除法法则,能够熟练地进行除法运算;
【学习方法】自主探究与合作交流相结合。
【学习重难点】
重点: 有理数除法法则.
难点: (1)商的符号的确定. (2)0不能作除数的理解.
【学习过程】
模块一 预习反馈
一、学习准备
1.有理数乘法法则:两数相乘,同号得 ,异号得 ,绝对值相乘。任何数与0相乘,积为 。几个不为0的数相乘,当负因数有奇数个时,积为 ;当负因数有偶数个时,积为 。互为倒数的两数相乘积为____.
2.分数除法法则:除以一个数,等于乘以这个数的______._______不能为0。
3.请同学们阅读教材p55—p56,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。
二、教材精读
4.有理数除法规则(一)
计算:64÷8=_____,(—27)÷(—9)=_____,(—18)÷6=____,0÷(—2)=_____
归纳:(1)两个有理数相除,同号得_____,异号得_____(填“正”或“负”),并把绝对值_______.(2)0除以任何非0的数都得______。 注意:0不能作______。
实践练习:(1)(-15)÷(-5) (2) (3)
(提示:先确定符号,再把绝对值相_______.)
归纳:步骤:(1)确定符号(2)绝对值相除
5.有理数除法规则(二)
比较下列各组数的计算结果(1)与 (2)与
发现:(1)1÷=1 (2)_____________________________
归纳:1. 有理数除法规则(二):除以一个不等于___的数等于 。
2.求一个有理数的倒数的方法:用1除以一个数,商就是这个数的倒数,正数的倒数是______,_____的倒数是负数,_____的倒数是它本身,___没有倒数
实践练习: (1) (2)
注意:(1)除法的混合运算,要按从左往右的顺序进行;(2)除法转化为乘法,再确定积的符号,最后求出结果。(3)切记看起运算,不要混淆了乘除运算。
三、教材拓展
6. 当x=____时,代数式没有意义。 4)一个数的是-,这个数是____.
7.若a 、b 互为倒数,c 、d 互为相反数,求2c + 2d -3ab 的值
(提示:乘积为__的两数互为倒数。互为相反数的两数和为______.)
解:∵a 、b 互为倒数,c 、d 互为相反数
∴ab=___,c+d=___
∴原式=
故,代数式的值为_____
注意:(1)解题格式(2)抓住互为相反数和互为倒数的两数的数量关系。
模块二 合作探究
8.m、n为相反数,则下列结论中错误的是( )
A.2m+2n=0 B.mn=-m2 C.|m|=|n| D. =-1
9. .如果abcd<0,a+b=0,cd>0,那么这四个数中负因数的个数至少有( )
A.4个 B.3个 C.2个 D.1个
10.下列说法错误的是( )
A.正数的倒数是正数 B.负数的倒数是负数
C.任何一个有理数a的倒数等于 D.乘积为-1的两个有理数互为负倒数
模块三 形成提升
1.计算:[×(-)+(-0.4)÷(-)]×
模块四 小结反思
一、本课知识:
1.除法法则(一)(1)两个有理数相除,同号得_____,异号得_____,并把绝对值_______.(2)0除以任何非0的数都得______。 注意:0不能作______。
2.有理数除法规则(二):除以一个不等于___的数等于 。
3.求一个有理数的倒数的方法:用1除以一个数,商就是这个数的倒数,正数的倒数是______,_____的倒数是负数,_____的倒数是它本身,___没有倒数
二、本课典例:灵活运用法则(一)和(二)进行有理数的除法运算。
三、我的反思:(你一定要认真思考哦!请把它写在下面,好吗?)
附:课外拓展思维训练:
若a、b、c为有理数,且的值。