第九章 统计全章综合测试卷(提高篇)
【人教A版2019】
考试时间:90分钟;满分:150分
姓名:___________班级:___________考号:___________
考卷信息:
本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分150分,限时90分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!
一.选择题(共8小题,满分40分,每小题5分)
1.(5分)(2022·全国·高一专题练习)下列命题是真命题的是( )
A.有甲 乙 丙三种个体按的比例分层抽样调查,如果抽取的甲个体数为,则样本容量为
B.若甲组数据的方差为,乙组数据为,,,,,则这两组数据中较稳定的是甲
C.数据,,,,,的平均数 众数 中位数相同
D.某单位 三个部门平均年龄为岁 岁和岁,又,两部门人员平均年龄为岁, 两部门人员平均年龄为岁,则该单位全体人员的平均年龄为岁
2.(5分)(2022春·四川眉山·高二期中)甲、乙、丙、丁四所学校分别有150、120、180、150名高二学生参加某次数学调研测试为了解学生能力水平,需从这600名学生中抽取一个容量为100的样本作卷面分析,记这项调查为;在丙校有50名数学培优生,需要从中抽取10名学生进行失分分析,记这项调查为完成这两项调查宜采用的抽样方法依次是
A.分层抽样法、系统抽样法 B.分层抽样法、简单随机抽样法
C.系统抽样法、分层抽样法 D.简单随机抽样法、分层抽样法
3.(5分)(2022·高一课时练习)“双色球”彩票中有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第5列和第6列的数字开始,从左向右读数,则依次选出来的第5个红色球的编号为
7816 6572 0802 6314 0214 4319 9714 0198
3204 9234 4936 8200 3623 4869 6938 7181
A.01 B.02 C.14 D.19
4.(5分)(2022·高一课时练习)某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取( )
A.15人 B.30人 C.40人 D.45人
5.(5分)(2023·贵州贵阳·统考一模)在一场跳水比赛中,7位裁判给某选手打分从低到高依次为,8.1,8.4,8.5,9.0,9.5,,若去掉一个最高分和一个最低分后的平均分与不去掉的平均分相同,那么最低分的值不可能是( )
A.7.7 B.7.8 C.7.9 D.8.0
6.(5分)(2022春·全国·高一期末)某公司2021年5月至2022年3月的各月利润率与每百元营业收入中的成本如图所示,则下列说法中正确的是( )
A.2021年5—12月的利润率呈递减趋势
B.这11个月的利润率的80%分位数为7.09%
C.这11个月的每百元营业收入中的成本呈递增趋势
D.这11个月的每百元营业收入中的成本的方差大于1
7.(5分)(2023·全国·高三专题练习)为贯彻落实健康第一的指导思想,切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,提高体质健康水平.某市抽调三所中学进行中学生体育达标测试,现简称为校、校、校.现对本次测试进行调查统计,得到测试成绩排在前200名学生层次分布的饼状图、校前200名学生的分布条形图,则下列结论不一定正确的是( )
A.测试成绩前200名学生中校人数超过校人数的2倍
B.测试成绩前100名学生中校人数超过一半以上
C.测试成绩前151—200名学生中校人数最多33人
D.测试成绩前51—100名学生中校人数多于校人数
8.(5分)(2023·全国·高三专题练习)根据气象学上的标准,连续5天的日平均气温低于即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:
①平均数;
②平均数且极差小于或等于3;
③平均数且标准差;
④众数等于5且极差小于或等于4.
则4组样本中一定符合入冬指标的共有( )
A.1组 B.2组 C.3组 D.4组
二.多选题(共4小题,满分20分,每小题5分)
9.(5分)(2022·全国·高一专题练习)某地区公共部门为了调查本地区中学生的吸烟情况,对随机抽出的编号为的名学生进行了调查.调查中使用了两个问题,问题:你的编号是否为奇数?问题:你是否经常吸烟?被调查者从设计好的随机装置(内有除颜色外完全相同的白球个,红球个)中摸出一个小球(摸完放回):摸到白球则如实回答问题,摸到红球则如实回答问题,回答“是”的人在一张白纸上画一个“√”,回答“否”的人什么都不用做,由于问题的答案只有“是”和“否”,而且回答的是哪个问题也是别人不知道的,因此被调查者可以毫无顾忌地给出真实的答案.最后统计得出,这人中,共有人回答“是”,则下列表述正确的是( )
A.估计被调查者中约有人吸烟
B.估计约有人对问题的回答为“是”
C.估计该地区约有的中学生吸烟
D.估计该地区约有的中学生吸烟
10.(5分)(2022秋·重庆渝北·高二阶段练习)为落实党中央的“三农”政策,某市组织该市所有乡镇干部进行了一期“三农”政策专题培训,并在培训结束时进行了结业考试.如图是该次考试成绩随机抽样样本的频率分布直方图.则下列关于这次考试成绩的估计正确的是( )
A.众数为82.5 B.80百分位数为91.7
C.平均数为88 D.没有一半以上干部的成绩在80~90分之间
11.(5分)(2023秋·广东揭阳·高三期末)2022年前三个季度全国居民人均可支配收入27650元,比2021年同期增长了约5.3%,图①为2021年与2022年前三季度全国及分城乡居民人均可支配收入的对比图;图②为2022年前三季度全国居民人均消费支出及构成(其中全国居民人均可支配收入=城镇居民人均可支配收入×城镇人口比重+农村居民人均可支配收入×农村人口比重),则下列说法正确的是( )
A.2022年前三个季度全国居民可支配收人的中位数一定高于2021年同期全国居民可支配收入的中位数
B.2022年城镇居民人数多于农村居民人数
C.2022年前三个季度全国居民在食品烟酒以及居住方面的人均消费超过了总消费的50%
D.2022年前三个季度全国居民在教育文化娱乐方面的人均消费支出超过了3700元
12.(5分)(2022秋·黑龙江哈尔滨·高二开学考试)已知采用分层抽样得到的样本数据由两部分组成,第一部分样本数据的平均数为,方差为;第二部分样本数据的平均数为,方差为,设,则以下命题正确的是( )
A.设总样本的平均数为,则
B.设总样本的平均数为,则
C.设总样本的方差为,则
D.若,则
三.填空题(共4小题,满分20分,每小题5分)
13.(5分)(2023·全国·高三专题练习)以下为甲、乙两组按从小到大顺序排列的数据:
甲组:14,30,37,a,41,52,53,55,58,80;
乙组:17,22,32,43,45,49,b,56.
若甲组数据的第40百分位数和乙组数据的平均数相等,则 .
14.(5分)(2022·高一课时练习)某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员作了如下统计表格.
产品类别 A B C
产品数量(件) 1300
样本容量(件) 130
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是 .
15.(5分)(2023·全国·高一专题练习)图1为某省某年1~4月份快递业务量统计图,图2为该省当年1~4月份快递业务收入统计图.
根据对以上统计图的理解,有下列四个说法:
①当年1~4月份快递业务量,3月份最高,2月份最低,差值接近2000万件;
②当年1~4月份快递业务量同比增长率均超过50%,在3月份最高,可能与春节后快递恢复网购迎来喷涨有关;
③从两图中看,快递业务量与业务收入的同比增长率并不完全一致,但业务量与业务收入变化高度一致;
④从1~4月份来看,快递业务量与快递业务收入有波动,但整体保持高速增长.
其中,正确的说法为 .(写出所有满足条件的说法序号)
16.(5分)(2022春·河北保定·高一阶段练习)在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是 .
①平均数;
②平均数且标准差;
③平均数且极差小于或等于2;
④众数等于1且极差小于或等于4.
四.解答题(共6小题,满分70分)
17.(10分)(2022·高二课时练习)儿童的喂养及辅食添加是影响儿童生长发育﹑身体健康的重要因素,喂养不当及辅食添加不正确,容易导致儿童贫血及其他疾病,影响儿童生长发育.为了解某地农村儿童的喂养、辅食添加情况,发现存在的问题,确定儿童的喂养及辅食添加的促进措施,拟在该地农村进行一次3岁以下儿童的喂养、辅食添加情况和贫血相关因素的调查研究.请给出一个合理的抽样方案(该地区共10个县).
18.(12分)(2022·高一单元测试)某市两所高级中学联合在暑假组织全体教师外出旅游,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加了其中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占47.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的,且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了解各条线路不同年级的教师对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:
(1)参加长白山之旅的高一教师、高二教师、高三教师在该组分别所占的比例;
(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.
19.(12分)(2022·全国·高三专题练习)已知A,B两家公司的员工月均工资(单位:万元)情况分别如图1,图2所示:
(1)以每组数据的区间中点值为代表,根据图1估计A公司员工月均工资的平均数、中位数,你认为用哪个数据更能反映该公司普通员工的工资水平?请说明理由.
(2)小明拟到A,B两家公司中的一家应聘,以公司普通员工的工资水平作为决策依据,他应该选哪个公司?
20.(12分)(2022秋·黑龙江哈尔滨·高二开学考试)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按元/千瓦时收费,超过400千瓦时的部分按元/千瓦时收费.
(1)求某户居民的用电费用(单位:元)关于月用电量(单位:千瓦时)的函数解析式;
(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中今年1月份用电费用小于260元的占,求的值;
(3)根据(2)中求得的数据计算用电量的分位数和平均数.
21.(12分)(2022·高一课时练习)鱼卷是泉州十大名小吃之一,不但本地人喜欢,而且深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户当地的习俗是农历正月不生产鱼卷,客户正月所需要的鱼卷都会在上一年农历十二月底进行一次性采购小张把去年年底采购鱼卷的数量x(单位:箱)在的客户称为“熟客”,并把他们去年采购的数量制成下表:
采购数x
客户数 10 10 5 20 5
(1)根据表中的数据作出频率分布直方图,并估计采购数在168箱以上(含168箱)的“熟客”人数;
(2)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的,估算小张去年年底总的销售量(同一组中的数据用该组区间的中点值为代表);
(3)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若不在网上出售鱼卷,则按去年的价格出售,每箱利润为20元,预计销售量与去年持平;若在网上出售鱼卷,则需把每箱售价下调2至5元,且每下调m元()销售量可增加1000m箱,求小张今年年底收入Y(单位:元)的最大值.
22.(12分)(2022·高一课时练习)某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.
(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.
1622779439 4954435482 1737932378 873509643 8426349164
8442175331 5724550688 7704744767 2176335025 8392120676
(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.
(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.第九章 统计全章综合测试卷(提高篇)
参考答案与试题解析
一.选择题(共8小题,满分40分,每小题5分)
1.(5分)(2022·全国·高一专题练习)下列命题是真命题的是( )
A.有甲 乙 丙三种个体按的比例分层抽样调查,如果抽取的甲个体数为,则样本容量为
B.若甲组数据的方差为,乙组数据为,,,,,则这两组数据中较稳定的是甲
C.数据,,,,,的平均数 众数 中位数相同
D.某单位 三个部门平均年龄为岁 岁和岁,又,两部门人员平均年龄为岁, 两部门人员平均年龄为岁,则该单位全体人员的平均年龄为岁
【解题思路】对于选项根据分层抽样的定义可判断正误,对于选项求出乙组数据的方程,与甲组数据的方差比较,可判断正误,对于选项求出数据的平均数、众数、中位数即可判断正误,对于选项设,,三个部门的人数为,,,根据题意可得,,从而求出该单位全体人员的平均年龄.
【解答过程】解:对于选项:如果抽取的甲个体数为9,则样本容量为,故选项是假命题,
对于选项:乙组数据的平均数为,方差为,
因为乙组数据的方程比甲组数据的方差小,所以这两组数据中较稳定的是乙,
故选项是假命题,
对于选项:数据1,2,3,4,4,5的平均数为、众数为4、中位数为,故选项是假命题,
对于选项:设,,三个部门的人数为,,,则有:
,化简得,
,化简得,
所以该单位全体人员的平均年龄为岁,
故选项是真命题,
故选:.
2.(5分)(2022春·四川眉山·高二期中)甲、乙、丙、丁四所学校分别有150、120、180、150名高二学生参加某次数学调研测试为了解学生能力水平,需从这600名学生中抽取一个容量为100的样本作卷面分析,记这项调查为;在丙校有50名数学培优生,需要从中抽取10名学生进行失分分析,记这项调查为完成这两项调查宜采用的抽样方法依次是
A.分层抽样法、系统抽样法 B.分层抽样法、简单随机抽样法
C.系统抽样法、分层抽样法 D.简单随机抽样法、分层抽样法
【解题思路】根据分层抽样和简单随机抽样的定义进行判断即可.
【解答过程】,四所学校,学生有差异,故使用分层抽样,
在同一所学校,且人数较少,使用的是简单随机抽样,
故选B.
3.(5分)(2022·高一课时练习)“双色球”彩票中有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第5列和第6列的数字开始,从左向右读数,则依次选出来的第5个红色球的编号为
7816 6572 0802 6314 0214 4319 9714 0198
3204 9234 4936 8200 3623 4869 6938 7181
A.01 B.02 C.14 D.19
【解题思路】根据随机数表,依次进行选择即可得到结论.
【解答过程】从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于33的编号
去除重复,可知对应的数值为08,02,14,19,01,04;
则第5个个体的编号为01.
故选A.
4.(5分)(2022·高一课时练习)某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取( )
A.15人 B.30人 C.40人 D.45人
【解题思路】由题知全校参加跑步的人数为,再根据分层抽样的方法求解即可得答案.
【解答过程】解:由题意,可知全校参加跑步的人数为,
所以.因为,所以.
因为按分层抽样的方法从中抽取一个容量为200的样本,
所以应从高三年级参加跑步的学生中抽取的人数为.
故选:D.
5.(5分)(2023·贵州贵阳·统考一模)在一场跳水比赛中,7位裁判给某选手打分从低到高依次为,8.1,8.4,8.5,9.0,9.5,,若去掉一个最高分和一个最低分后的平均分与不去掉的平均分相同,那么最低分的值不可能是( )
A.7.7 B.7.8 C.7.9 D.8.0
【解题思路】根据所给条件可得出,再由的范围验证选项即可得解.
【解答过程】因为去掉最高分与最低分后平均分为,
所以,
解得,
由于得分按照从低到高的顺序排列的,故,,
当时,,满足上述条件,故A错误;当时,,满足上述条件,故B错误;当时,,满足上述条件,故C错误;当时,,不满足上述条件,故D正确.
故选:D.
6.(5分)(2022春·全国·高一期末)某公司2021年5月至2022年3月的各月利润率与每百元营业收入中的成本如图所示,则下列说法中正确的是( )
A.2021年5—12月的利润率呈递减趋势
B.这11个月的利润率的80%分位数为7.09%
C.这11个月的每百元营业收入中的成本呈递增趋势
D.这11个月的每百元营业收入中的成本的方差大于1
【解题思路】由图中信息可判断A,C;由百分位数和方差的定义可判断B,D.
【解答过程】对于A,2021年5,6月的利润率相同,8,9月的利润率在递增,所以A不正确;
对于B,将这11个月的利润率从小排到大为:
,
所以80%分位数为:,为第9位数即7.09%.所以B正确;
对于C,由图中可知,8,9月的每百元营业收入中的成本呈递减趋势,所以C不正确;
对于D,这11个月的每百元营业收入中的成本的平均数为,
因为,所以这11个月的每百元营业收入中的成本的方差不可能大于1,所以D不正确.
故选:B.
7.(5分)(2023·全国·高三专题练习)为贯彻落实健康第一的指导思想,切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,提高体质健康水平.某市抽调三所中学进行中学生体育达标测试,现简称为校、校、校.现对本次测试进行调查统计,得到测试成绩排在前200名学生层次分布的饼状图、校前200名学生的分布条形图,则下列结论不一定正确的是( )
A.测试成绩前200名学生中校人数超过校人数的2倍
B.测试成绩前100名学生中校人数超过一半以上
C.测试成绩前151—200名学生中校人数最多33人
D.测试成绩前51—100名学生中校人数多于校人数
【解题思路】直接计算判定选项A、B一定正确;计算前1—150名学生中校人数和校最多可能的人数,得到校最少可能的人数,得前151—200名学生中校人数最多可能值,判定选项C一定正确;考虑到这200名学生中校学生总数为68人,至多有可能会有25人在151—200名之间,可以判定选项D不一定正确.
【解答过程】前200名学生中校人数人,校人数人,,故A一定正确;
前100名学生中校人数约为人,超过半数的50人,故B一定正确;
成绩前150名以内的学生中校人数约为人,校人数最多全在这个范围,有人,所以校至少有人,又∵成绩前200名学生中校人数为40人,所以校至多有=33人测试成绩前151—200名之间,故C一定正确;
测试成绩前51—100名学生中校人数约为25人,这200名学生中校学生总数为人,有可能也有25人在51—100名之间,故D不一定正确,
故选:D.
8.(5分)(2023·全国·高三专题练习)根据气象学上的标准,连续5天的日平均气温低于即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:
①平均数;
②平均数且极差小于或等于3;
③平均数且标准差;
④众数等于5且极差小于或等于4.
则4组样本中一定符合入冬指标的共有( )
A.1组 B.2组 C.3组 D.4组
【解题思路】举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.
【解答过程】①举反例:,,,,,其平均数.但不符合入冬指标;
②假设有数据大于或等于10,由极差小于或等于3可知,
则此组数据中的最小值为,此时数据的平均数必然大于7,
与矛盾,故假设错误.则此组数据全部小于10. 符合入冬指标;
③举反例:1,1,1,1,11,平均数,且标准差.但不符合入冬指标;
④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.
故选:B.
二.多选题(共4小题,满分20分,每小题5分)
9.(5分)(2022·全国·高一专题练习)某地区公共部门为了调查本地区中学生的吸烟情况,对随机抽出的编号为的名学生进行了调查.调查中使用了两个问题,问题:你的编号是否为奇数?问题:你是否经常吸烟?被调查者从设计好的随机装置(内有除颜色外完全相同的白球个,红球个)中摸出一个小球(摸完放回):摸到白球则如实回答问题,摸到红球则如实回答问题,回答“是”的人在一张白纸上画一个“√”,回答“否”的人什么都不用做,由于问题的答案只有“是”和“否”,而且回答的是哪个问题也是别人不知道的,因此被调查者可以毫无顾忌地给出真实的答案.最后统计得出,这人中,共有人回答“是”,则下列表述正确的是( )
A.估计被调查者中约有人吸烟
B.估计约有人对问题的回答为“是”
C.估计该地区约有的中学生吸烟
D.估计该地区约有的中学生吸烟
【解题思路】根据题意知被调查者回答第一个问题的概率为,其编号为奇数的概率也是,计算可得出随机抽出的名学生中回答第一个问题且为“是”的学生人数,由此可求出回答第二个问题且为“是”的学生人数,由此可估计此地区中学生吸烟人数的百分比,进而可估计出被调查者中吸烟的人数,判断选项即可得出结论.
【解答过程】随机抽出的名学生中,回答第一个问题的概率是,其编号是奇数的概率也是.
所以回答问题且回答的“是”的学生人数为;
回答问题且回答的“是”的人数为.
由此可估计该地区中学生吸烟人数的百分比为,估计被调查者中吸烟的人数为.
故选:BC.
10.(5分)(2022秋·重庆渝北·高二阶段练习)为落实党中央的“三农”政策,某市组织该市所有乡镇干部进行了一期“三农”政策专题培训,并在培训结束时进行了结业考试.如图是该次考试成绩随机抽样样本的频率分布直方图.则下列关于这次考试成绩的估计正确的是( )
A.众数为82.5 B.80百分位数为91.7
C.平均数为88 D.没有一半以上干部的成绩在80~90分之间
【解题思路】A根据直方图判断众数的位置即可;B利用百分位数的运算方法求出80百分位数即可;C利用直方图求出平均数即可;D求出80~90分之间的频率,与比较大小即可
【解答过程】由图知:众数出现在之间,故众数为,故A正确;
由图可得该次考试成绩在分以下所占比例为,
在分以下所占比例为,
因此,第百分位数一定位于内,
所以第百分位数为,故B正确;
由 ,C错误;
由,有一半以上干部的成绩在80~90分之间,D错误.
故选:AB.
11.(5分)(2023秋·广东揭阳·高三期末)2022年前三个季度全国居民人均可支配收入27650元,比2021年同期增长了约5.3%,图①为2021年与2022年前三季度全国及分城乡居民人均可支配收入的对比图;图②为2022年前三季度全国居民人均消费支出及构成(其中全国居民人均可支配收入=城镇居民人均可支配收入×城镇人口比重+农村居民人均可支配收入×农村人口比重),则下列说法正确的是( )
A.2022年前三个季度全国居民可支配收人的中位数一定高于2021年同期全国居民可支配收入的中位数
B.2022年城镇居民人数多于农村居民人数
C.2022年前三个季度全国居民在食品烟酒以及居住方面的人均消费超过了总消费的50%
D.2022年前三个季度全国居民在教育文化娱乐方面的人均消费支出超过了3700元
【解题思路】根据图中所给的信息对选项一一判断即可得出答案.
【解答过程】对于选项A,图中信息体现的是平均数的差别,没有提供中位数的信息,不能作出判断,故选项A错误;
对于选项B,设2022年城镇居民占全国居民的比重为x,
则有,解得,故选项B正确;
2022年前三个季度全国居民在食品烟酒以及居住方面的人均消费支出占总消费的比例分别为30%,24%,故选项C正确;
2022年前三个季度全国居民在教育文化娱乐方面的人均消费支出为(元),且,故选项D错误.
故选:BC.
12.(5分)(2022秋·黑龙江哈尔滨·高二开学考试)已知采用分层抽样得到的样本数据由两部分组成,第一部分样本数据的平均数为,方差为;第二部分样本数据的平均数为,方差为,设,则以下命题正确的是( )
A.设总样本的平均数为,则
B.设总样本的平均数为,则
C.设总样本的方差为,则
D.若,则
【解题思路】对于A选项,因为,由放缩可得;
对于B选项,举例说明B不正确;
对于C选项,举例说明C不正确;
对于D选项,若,代入总体方差计算公式,可得.
【解答过程】对于A选项,因为,所以
,即,A正确;
对于B选项,取第一部分数据为,则,,取第二部分数据为,则,,则,B不正确;
对于C选项,取第一部分数据为,则,,
取第二部分数据为,则,,则,
,C不正确;
对于D选项,若,则 ,D正确.
故选:AD.
三.填空题(共4小题,满分20分,每小题5分)
13.(5分)(2023·全国·高三专题练习)以下为甲、乙两组按从小到大顺序排列的数据:
甲组:14,30,37,a,41,52,53,55,58,80;
乙组:17,22,32,43,45,49,b,56.
若甲组数据的第40百分位数和乙组数据的平均数相等,则 100 .
【解题思路】根据百分位数和平均数的定义即可列出式子计算求解.
【解答过程】因为,甲组数据的第40百分位数为第四个数和第五个数的平均数,
乙组数据的平均数为,
根据题意得,解得:,
所以,
故答案为:.
14.(5分)(2022·高一课时练习)某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员作了如下统计表格.
产品类别 A B C
产品数量(件) 1300
样本容量(件) 130
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是 800 .
【解题思路】根据分层抽样的特点,进行求解即可.
【解答过程】设C产品的数量为x件,则A产品的数量为1700-x件,
由,
可得C产品的数量为800件.
故答案为800.
15.(5分)(2023·全国·高一专题练习)图1为某省某年1~4月份快递业务量统计图,图2为该省当年1~4月份快递业务收入统计图.
根据对以上统计图的理解,有下列四个说法:
①当年1~4月份快递业务量,3月份最高,2月份最低,差值接近2000万件;
②当年1~4月份快递业务量同比增长率均超过50%,在3月份最高,可能与春节后快递恢复网购迎来喷涨有关;
③从两图中看,快递业务量与业务收入的同比增长率并不完全一致,但业务量与业务收入变化高度一致;
④从1~4月份来看,快递业务量与快递业务收入有波动,但整体保持高速增长.
其中,正确的说法为 ①②③ .(写出所有满足条件的说法序号)
【解题思路】①分析统计图即可得到当年1~4月份快递业务量,3月份最高,2月份最低,差值的多少.
②分析统计图即可得到当年1~4月份快递业务量同比增长率,进而得出结论.
③分析统计图即可得到快递业务量与业务收入的同比增长率是否一致,业务量与业务收入变化高度是否一致.
④分析统计图即可得到快递业务量与快递业务收入的波动情况,以及整体的变化趋势.
【解答过程】对于①,当年1~4月份快递业务量,3月份最高,有4397万件,2月份最低,有2411万件,其差值接近2000万件,所以①正确;
对于②,当年1~4月份快递业务量的同比增长率分别为55%,53%,62%,58%,均超过50%,在3月份最高,可能与春节后快递恢复网购迎来喷涨有关,所以②正确;
对于③,由两图易知,快递业务量与业务收入的同比增长率并不完全一致,而其业务量从高到低变化是3月→4月→1月→2月,业务收入从高到低变化也是3月→4月→1月→2月,保持高度一致,所以③正确;
对于④,由图知,快递业务收入2月对1月减少,4月对3月减少,整体不具备高速增长之说,所以④不正确.
故答案为:①②③.
16.(5分)(2022春·河北保定·高一阶段练习)在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是 ②③④ .
①平均数;
②平均数且标准差;
③平均数且极差小于或等于2;
④众数等于1且极差小于或等于4.
【解题思路】根据各个选项,分别分析新增人数的最大值是否可能大于5,即可得结论.
【解答过程】仅仅平均值不大于3,有可能其中某个值大于5,①不符合;
平均数时,若7天中有一个数值大于5,则方差,因此在标准差时,7天的数据都不超过5,②符合指标;
平均数且极差小于或等于2,最大值必不大于5,③符合指标;
众数等于1且极差小于或等于4时,最大值必不大于5,否则极差大于6-1=5,④符合指标.
故答案为:②③④.
四.解答题(共6小题,满分70分)
17.(10分)(2022·高二课时练习)儿童的喂养及辅食添加是影响儿童生长发育﹑身体健康的重要因素,喂养不当及辅食添加不正确,容易导致儿童贫血及其他疾病,影响儿童生长发育.为了解某地农村儿童的喂养、辅食添加情况,发现存在的问题,确定儿童的喂养及辅食添加的促进措施,拟在该地农村进行一次3岁以下儿童的喂养、辅食添加情况和贫血相关因素的调查研究.请给出一个合理的抽样方案(该地区共10个县).
【解题思路】根据简单随机抽样的知识,结合该地区的县数量和儿童年龄的限制,设计出一个方案即可.
【解答过程】解:可采用如下抽样方案:首先从该地区10个县中随机抽取4个县,其次在随机抽取的各县中随机抽取5个乡(镇),再次在随机抽取的乡(镇)中随机抽取5个行政村,最后在被抽中的行政村中各抽取24户有3岁以下儿童的住户并且在样本户的3岁以下儿童中随机抽取1名儿童.当抽样村符合要求的家庭不足24户时,将其全部调查,不够的户在邻村补齐(邻村是指距离最近的非抽样村).(根据实际情况,也可有其他合理的抽样方案).
18.(12分)(2022·高一单元测试)某市两所高级中学联合在暑假组织全体教师外出旅游,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加了其中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占47.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的,且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了解各条线路不同年级的教师对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:
(1)参加长白山之旅的高一教师、高二教师、高三教师在该组分别所占的比例;
(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.
【解题思路】(1)设参加华东五市游的人数为x,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a,b,c,计算得到答案.
(2)根据分层抽样公式计算得到答案.
【解答过程】(1)设参加华东五市游的人数为x,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a,b,c
则有,,解得,.
故
参加长白山之旅的高一教师、高二教师、高三教师在该组所占的比例分别为40%,50%,10%.
(2)参加长白山之旅的高一教师应抽取人数为;
抽取的高二教师人数为;
抽取的高三教师人数为.
19.(12分)(2022·全国·高三专题练习)已知A,B两家公司的员工月均工资(单位:万元)情况分别如图1,图2所示:
(1)以每组数据的区间中点值为代表,根据图1估计A公司员工月均工资的平均数、中位数,你认为用哪个数据更能反映该公司普通员工的工资水平?请说明理由.
(2)小明拟到A,B两家公司中的一家应聘,以公司普通员工的工资水平作为决策依据,他应该选哪个公司?
【解题思路】(1)根据平均数、中位数的定义,由图1扇形统计图上读取的数据,可得答案;
(2)求解出两家公司的平均数、中位数、众数,进行比较,可得答案.
【解答过程】(1)
A公司员工月均工资的平均数为
(万元).
由题图1可知A公司员工月均工资在0.6万元以下的比例为,
所以A公司员工月均工资的中位数约为0.6万元.
用中位数更能反映该公司普通员工的工资水平,理由如下:
因为平均数受每一个数据的影响,越离群的数据对平均数的影响越大,该公司少数员工的月收入很高,在这种情况下平均数并不能较好的反映普通员工的收入水平,而中位数不受少数极端数据的影响,可以较好的反映普通员工的收入水平.
(2)
B公司员工月均工资的平均数为
(万元)
由题图2知,B公司员工月均工资在0.6万元以下的频率为,在0.8万元以下的频率为.
设B公司员工月均工资的中位数为x万元,
则,得.
小明应选择B公司应聘,理由如下:
B公司员工工资数据较为集中,月均工资的平均数和中位数均能反映该公司普通员工的平均收入水平,B公司员工月均工资平均数为0.69,中位数为0.7,均大于A公司员工月均工资的中位数0.62,所以以公司普通员工的工资水平作为决策依据,小明应该选B公司应聘.
20.(12分)(2022秋·黑龙江哈尔滨·高二开学考试)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按元/千瓦时收费,超过400千瓦时的部分按元/千瓦时收费.
(1)求某户居民的用电费用(单位:元)关于月用电量(单位:千瓦时)的函数解析式;
(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中今年1月份用电费用小于260元的占,求的值;
(3)根据(2)中求得的数据计算用电量的分位数和平均数.
【解题思路】(1)根据题目条件,列出函数解析式即可;
(2)将代入(1)中解析式得到的值,再结合频率分布直方图求的值;
(3)根据百分位数和平均数的定义,结合频率分布直方图中的数据,计算即可.
【解答过程】(1)
当时,;
当时,;
当时,.
所以与之间的函数解析式为
(2)
由(1)可知,当时,,即用电量小于400千瓦时的占,
结合频率分布直方图可知,
解得.
(3)
设75%分位数为,
由题图知,用电量低于300千瓦时的频率为
,
用电量低于400千瓦时的频率为,
所以分位数在内,所以,解得,
即用电量的分位数为375千瓦时.
平均数= 千瓦时.
21.(12分)(2022·高一课时练习)鱼卷是泉州十大名小吃之一,不但本地人喜欢,而且深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户当地的习俗是农历正月不生产鱼卷,客户正月所需要的鱼卷都会在上一年农历十二月底进行一次性采购小张把去年年底采购鱼卷的数量x(单位:箱)在的客户称为“熟客”,并把他们去年采购的数量制成下表:
采购数x
客户数 10 10 5 20 5
(1)根据表中的数据作出频率分布直方图,并估计采购数在168箱以上(含168箱)的“熟客”人数;
(2)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的,估算小张去年年底总的销售量(同一组中的数据用该组区间的中点值为代表);
(3)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若不在网上出售鱼卷,则按去年的价格出售,每箱利润为20元,预计销售量与去年持平;若在网上出售鱼卷,则需把每箱售价下调2至5元,且每下调m元()销售量可增加1000m箱,求小张今年年底收入Y(单位:元)的最大值.
【解题思路】(1)根据统计表作出频率分布直方图,再根据直方图即可求出,
(2)根据统计表和直方图即可求出,
(3)没有在网上出售鱼卷,则今年的年底小张的收入为(元,若网上出售鱼卷,则今年的年底的销售量为,即可求出的最大值,比较即可
【解答过程】解: (1)作出频率分布直方图,如图
根据上图,可知采购量在168箱以上(含168箱)的“熟客”人数为
(2)去年年底“熟客”所采购的鱼卷总数大约为
(箱)
小张去年年底总的销售量为(箱)
(3)若不在网上出售鱼卷,则今年年底小张的收入为(元);
若在网上出售鱼卷,则今年年底的销售量为箱,每箱的利润为,
则今年年底小张的收入为
,
当时, 取得最大值256000
∵,
∴小张今年年底收入的最大值为256000元.
22.(12分)(2022·高一课时练习)某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.
(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.
1622779439 4954435482 1737932378 873509643 8426349164
8442175331 5724550688 7704744767 2176335025 8392120676
(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.
(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.
【解题思路】(1)根据随机数表依次读取数据即可,取01~80之间的数据;
(2)根据系统抽样,确定组矩,计算可得;
(3)根据平均数和方差得出数据的整体关系,整体代入求解10名选手的平均数和方差.
【解答过程】(1)根据题意读取的编号依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,
所以抽取的第6个观众的编号为42;
(2)若采用系统抽样,组矩为8,最小编号为06,则最大编号为6+9×8=78;
(3)记选择科技类的6人成绩分别为:,
选择文艺类的4人成绩分别为:,
由题:,,
,,
所以这10名选手的平均数为,
方差为
.