人教版初中数学2023-2024学年九年级下学期课时培优练习 27.1图形的相似

文档属性

名称 人教版初中数学2023-2024学年九年级下学期课时培优练习 27.1图形的相似
格式 zip
文件大小 921.0KB
资源类型 试卷
版本资源
科目 数学
更新时间 2024-01-20 23:03:32

文档简介

人教版初中数学2023-2024学年九年级下学期课时培优练习 27.1图形的相似
一、选择题
1.(2023·舒城模拟)将一张()纸片,以它的一边为边长剪去一个菱形,将余下的平行四边形中,再以它的一边为边长剪去一个菱形,若剪去两个菱形后所剩下的平行四边形与原来相似,则的相邻两边与的比值是(  )
A. B.
C.或 D.或或
2.(2023九上·鄞州期末)如图,E,F,G,H分别是矩形四条边上的点,连接相交于点I,且,,矩形矩形,连接交于点P,Q,下列一定能求出面积的条件是(  )
A.矩形和矩形的面积之差
B.矩形与矩形的面积之差
C.矩形和矩形的面积之差
D.矩形和矩形的面积之差
3.(2022九上·瑞安期末)如图,,,,是正方形边上的点,且,和将正方形剪切成四片进行重新拼接成四边形,若正方形和四边形的面积之比为,则(  )
A.2 B.3 C. D.
4.(2022九上·镇海区期中)如图, 点P是平行四边形内部一点, 过P分别作和的平行线交平行四边 形的四边于. 连结分别交于M和N. 若四边形四边形,且四边形的面积是四边形的3倍. 下列选项正确的是(  )
A. B. C. D.
5.(2019九上·平顶山期中)如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为(  )
A. B. C.1 D.
6.(2017·泰州)如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是(  )
A.2 B.4 C.6 D.8
7.下列说法不一定正确的是(  )
A.所有的等边三角形都相似 B.所有的等腰直角三角形都相似
C.所有的菱形都相似 D.所有的正方形都相似
8.(2023九上·阜阳期中)如图,BD是的对角线,BD⊥AD,AB=2AD=6,点E是CD的中点,点F、P分别是线段AB、BD上的动点,若△ABD∽△PBF,且△PDE是等腰三角形,则PF的长为(  )
A.或 B.或 C.或 D.或
9.要拼出和图①中的菱形相似的较长对角线为88cm的大菱形(如图②) ,需要如图①的菱形的个数是(  ).
A.11个 B.121个 C.22个 D.242 个
10.(2021九上·瑶海期末)若一个矩形剪掉一个面积最大的正方形,剩下的小矩形与原来的矩形相似,且原矩形的较长边长为,则剩下的小矩形的较短边长为(  )
A. B. C. D.
二、填空题
11.如图所示,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则的值为   .
12.(2020九上·孝义期末)如图所示,复印纸的型号有A0,A1,A2,A3,A4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸沿较长边的中点对折,就能得到两张下一型号(A4)的复印纸,且得到的两个矩形都和原来的矩形相似,那么这些型号的复印纸的长、宽之比为   .
13.(2019·抚顺模拟)如图,正六边形A1B1C1D1E1F1的边长为1,它的6条对角线围成一个正六边形A2B2C2D2E2F2;正六边形A2B2C2D2E2F2的6条对角线又围成一个正六边形A3B3C3D3E3F3…;如此继续下去,则六边形A4B4C4D4E4F4的面积是   .
14.(2023九上·闵行期中)如图,在中,,,点M,N分别在边上,将沿直线翻折,点C恰好落在边上,记为点,如果与相似,那么折痕的长为   .
15.(2021八下·南岸期末)某地为了更好地保护红军历史博物馆,经过精心的筹备规划,决定把原来博物馆的平面图扩大.如图,已知原来博物馆的平面图是 ,规划后博物馆的平面图是四边形 ,其中点A,B,C,D分别是边 的中点.如果原来博物馆的平面图 的面积为 ,则规划后博物馆的平面图 占地面积为    .
三、解答题
16.(2018九上·碑林月考)如图,一个矩形广场的长为100m,宽为80m,广场外围两条纵向小路的宽均为1.5m,如果两条横向小路的宽都为xm,那么当x为多少时,小路内、外边缘所围成的两个矩形相似.
17.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?
18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是多少?
19.八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:
(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.
20.如图,An系列矩形纸张的规格特征是:①各矩形纸张都相似;②A1纸对裁后可以得到两张A2纸,A2纸对裁后可以得到两张A3纸,…,An纸对裁后可以得到两张An+1纸.
(1)填空:A1纸面积是A2纸面积的几倍,A2纸周长是A4纸周长的几倍;
(2)根据An系列纸张的规格特征,求出该系列纸张的长与宽(长大于宽)之比;
(3)设A1纸张的重量为a克,试求出A8纸张的重量.(用含a的代数式表示)
答案解析部分
1.【答案】C
【知识点】相似多边形的性质
【解析】【解答】解:如图所示:设AD=a,AB=b,
D C
∴AH=AD,
∴HB=b-a,
∵HB=FG= GC,
∴BG=a-(b-a)= 2a -b,
分两种情况讨论:
①∵剩下的平行四边形与原来平行四边形ABCD相似,
∴,
∴,
设,
∴,
解得:;
②∵剩下的平行四边形与原来平行四边形ABCD相似,
∴,
∴,
设,
∴,
解得:
综上所述: 的相邻两边与的比值是或.
故答案为:C.
【分析】分类讨论,根据相似多边形的性质计算求解即可。
2.【答案】A
【知识点】矩形的性质;相似多边形的性质;相似三角形的判定与性质
【解析】【解答】解:设,

∴,
∴,
∴,


故答案为:A.
【分析】设AE=a,BG=b,由矩形的性质及相似矩形的性质设ED=ka,AG=kb,由平行于三角形一边的直线,截其它两边,所截的三角形与原三角形相似得△CHP∽△CDA,根据相似三角形对应边成比例得PH=a,进而根据S△DPQ=S△DPC-S△DCQ,S矩形BGIF=ab,S矩形EDHI=k2ab,即可得出答案.
3.【答案】A
【知识点】菱形的判定与性质;正方形的判定与性质;图形的剪拼;相似多边形的性质;三角形全等的判定(SAS)
【解析】【解答】解:如图,连接,
∵四边形ABCD是正方形,
∴,
∵,
∴,
∴,
∴,
∴四边形EHFG是菱形,
∵,
∴,
∵,
∴,
∴,
∴四边形EHFG是正方形,
∴,
由拼接可知四边形MQPN和四边形A'B'C'D'都是正方形,,,
∴.
∵正方形ABCD和四边形MQPN的面积之比为,
∴正方形ABCD和四边形A'B'C'D'的面积之比为,
∴,
∴,
∴,
∴.
故答案为:A.
【分析】首先证明△AEG≌△BHE≌△CFH≌△DGF,根据全等三角形对应边相等得EG=FG=EH=HF,根据四边相等的四边形是菱形得四边形EHFG是菱形,然后判断出∠EGF=90°,根据有一个内角是直角的菱形是正方形得四边形EHFG是正方形,根据正方形的对角线互相垂直得GH⊥EF,由拼接可知四边形MQPN和四边形A'B'C'D'都是正方形,然后根据正方形面积计算方法及相似多边形的性质可得答案.
4.【答案】D
【知识点】三角形全等及其性质;平行四边形的判定与性质;相似多边形的性质
【解析】【解答】解:∵点P是平行四边形ABCD内部一点, 过P分别作AB和BC的平行线交平行四边形ABCD的四边于E、F、G、H.
四边形四边形,
∴四边形都是平行四边形,且相似,
设,
∵,
∴,即,
∴,

∴,
∵四边形的面积是四边形的3倍.设EP=x,PH=y,BF=kx,BG=ky,
∴,
∴,
∴、、都不成立,
成立,
故答案为:D.
【分析】易得四边形PFBG、DEPH都是平行四边形,且相似,设EP=x,PH=y,BF=kx,BG=ky,易得,从而可得GM=x,FN=y,EM=kx,NH=ky,然后推出△CGM≌△NFA,△CNH≌△MAE,则可得,四边形FBCH的面积是四边形AFPE的3倍,设EP=x,PH=y,BF=kx,BG=ky,进而建立方程求出k的值,从而即可一一判断得出答案.
5.【答案】B
【知识点】菱形的性质;平移的性质;相似多边形的性质
【解析】【解答】解:∵四边形ABCD是菱形,
∴AC⊥BD,AD=2=CD,∠DCA= ∠BCD=30°,
∴A'D=1,A'C= DA'= ,
∴菱形ABCD的面积=4× ×A'D×A'C=2 ,
如图,
由平移的性质得, ABCD∽ A'ECF,且A'C= AC,
∴四边形A'ECF的面积是 ABCD面积的 ,
∴阴影部分的面积= = ,
故答案为:B.
【分析】先求出菱形ABCD的面积,由平移的性质可得四边形A'ECF的面积是 ABCD面积的 ,即可求解.
6.【答案】D
【知识点】反比例函数的图象;相似多边形的性质;相似三角形的判定
【解析】【解答】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n, ),
∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,
∴PA=PB,
∵P点坐标(n, ),
∴OD=CQ=n,
∴AD=AQ+DQ=n+4;
∵当x=0时,y=﹣x﹣4=﹣4,
∴OC=DQ=4,GE=OE= OC= ;
同理可证:BG= BF= PD= ,
∴BE=BG+EG= + ;
∵∠AOB=135°,
∴∠OBE+∠OAE=45°,
∵∠DAO+∠OAE=45°,
∴∠DAO=∠OBE,
∵在△BOE和△AOD中, ,
∴△BOE∽△AOD;
∴ = ,即 = ;
整理得:nk+2n2=8n+2n2,化简得:k=8;
故答案为:D.
方法2、如图1,
过B作BF⊥x轴于F,过点A作AD⊥y轴于D,
∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,
∴PA=PB,
∵P点坐标(n, ),
∴A(n,﹣n﹣4),B(﹣4﹣ , )
∴AD=AQ+DQ=n+4;
∵当x=0时,y=﹣x﹣4=﹣4,
∴OC=4,
当y=0时,x=﹣4.
∴OG=4,
∵∠AOB=135°,
∴∠BOG+∠AOC=45°,
∵直线AB的解析式为y=﹣x﹣4,
∴∠AGO=∠OCG=45°,
∴∠BGO=∠OCA,∠BOG+∠OBG=45°,
∴∠OBG=∠AOC,
∴△BOG∽△OAC,
∴ = ,
∴ = ,
在等腰Rt△BFG中,BG= BF= ,
在等腰Rt△ACD中,AC= AD= n,
∴ ,
∴k=8,
故答案为:D.
【分析】求k可求出P的横纵坐标的积即可,设出P坐标(n,),可观察出一组相似三角形△BOG∽△OAC,可得出对应边成比例,用n,k的代数式表示出对应边,代入比例式,变为乘积式后即可求出k.
7.【答案】C
【知识点】相似图形
【解析】【解答】A、所有的等边三角形都相似,正确;B、所有的等腰直角三角形都相似,正确;C、所有的菱形不一定都相似,故错误;D、所有的正方形都相似,正确.
故选C.
【分析】 利用“对应角相等,对应边的比也相等的多边形相似”进行判定即可.
8.【答案】C
【知识点】等腰三角形的性质;含30°角的直角三角形;勾股定理;相似多边形的性质
【解析】【解答】△PDE是等腰三角形,可分成以下几种情况:当PD=PE时:过点P作PG⊥DE于点G,∴DG=,
在△ABD中,∵∠ADB=90°,AB=2AD=6,
∴∠ABD=30°,BD=,
∵AB∥CD,
∴∠PDG=∠ABD=30°,
∵∠DGP=90°,
∴PD=2PG,
∴,,
∴BP=,
∵△ABD∽△PBF,
∴,
∴PF=;
当DE=DP=3时,BP=,
∴PF=;
当DE=PE=3时,点P与点B重合,这种情况不存在。
综上,PF的长为或.
故答案为:C。【分析】△PDE是等腰三角形可分成几种情况进行讨论:当PD=PE时,过点P作PG⊥DE于点G,可得DG=,进而求得BP的长,然后根据相似三角形的性质得出PF=;当DE=DP=3时,BP=,PF=;当DE=PE=3时,点P与点B重合,这种情况不存在
9.【答案】B
【知识点】相似多边形的性质
【解析】【解答】解: 设需要x个,根据题意,
解得:x=121.
故答案为:B.
【分析】根据相似多边形的面积的比等于相似比的平方列式,求解即可得出答案.
10.【答案】D
【知识点】相似多边形的性质
【解析】【解答】解:如图,
设剩下的小矩形的较短边长为xcm,则剩下的小矩形的较长边长为(8-x)cm,
由题意得:∵剩下的小矩形与原来的矩形相似
∴,解得:x
∵(舍去)

故答案为:D
【分析】先求出,再求出x,最后计算求解即可。
11.【答案】
【知识点】勾股定理;正方形的性质;相似多边形的性质;三角形全等的判定(ASA)
【解析】【解答】解:∵四边形EFGH是正方形,
∴EH=EF,∠HEF=90°,
∴∠AEH+∠BEF=90°,
∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠AEH+∠AHE=90°,∠BEF+∠BFE=90°,
∴∠AEH=∠BFE,∠AHE=∠BEF,
又 EH=EF,
∴(ASA)
∴AE=BF,
∴EF=,
∵两个正方形相似,且相似比,
∴,
∴,
∴,
∴,
又 AE<BE,
∴.
故答案为:.
【分析】题目已知相似比,那么本题的解题思路就是把相似比用AE和BE来表示,其中AB=AE+BE,而EF于BE在同一直角三角形中,很容易联想到用勾股定理,而题目易证AE=BF,而,得,EF也用BE和AE表示出来了,代入相似比得,从而算出,题目告知AE<BE,因此.
12.【答案】
【知识点】相似多边形的性质
【解析】【解答】解:设这些型号的复印纸的长、宽分别为b、a,
∵得到的矩形都和原来的矩形相似,
∴ ,
则 ,
∴ ,
∴这些型号的复印纸的长宽之比为 ,
故答案为: .
【分析】设这些型号的复印纸的长、宽分别为b、a,根据相似多边形的对应边的比相等列出比例式,计算即可.
13.【答案】
【知识点】相似多边形的性质
【解析】【解答】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,
∴B1B2= A1B1= ,
∴A2B2= A1B2=B1B2= ,
∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,
∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=( )2= ,
∵正六边形A1B1C1D1E1F1的面积=6× ×1× = ,
∴正六边形A2B2C2D2E2F2的面积= × = ,
同理:正六边形A4B4C4D4E4F4的面积=( )3× = ;
故答案为: .
【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,进而得到正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=( )2= ,结合正六边形A1B1C1D1E1F1的面积=6× ×1× = ,即可得到正六边形A2B2C2D2E2F2的面积,以此类推,即可得到答案.
14.【答案】5或
【知识点】相似多边形的性质
【解析】【解答】解:在中,,
∴,
∴,,
由折叠的性质知,
要使与相似,即与相似,
∵,
∴是的垂直平分线,设与交于点O,
∴,
如图所示:当时,则,
∴,
∴;
如图所示:当时,则,
∴,
∴,
∴,
同理,,则,
∴,
设中,边上的高为,
∴,
∴,
∵,
∴,
∴;
故答案为:5或.
【分析】分两种情况画出图形,由相似三角形的性质得出对应边成比例,即可求出MN的长度。
15.【答案】600
【知识点】平行四边形的判定与性质;相似多边形的性质;三角形的中位线定理
【解析】【解答】解:连接EG,设 、 的面积分别为 a、b,四边形EFGH的面积为S,如图所示.
∵A、B分别是EF、FG的中点,
∴AB是 的中位线,AB∥EG.
∵C、D分别是GH、HE的中点,
∴DC是 的中位线,DC∥EG.




同理,若连接FH,设 、 的面积分别为c、d,可求得


解得,S=600.
故答案为:600
【分析】连接EG,设△FAB、△HCD的面积分别为a、b,四边形EFGH的面积为S,连接EG,根据三角形中位线的性质,可证得AB∥EG,DC∥EG,再利用相似三角形的性质,求得△FAB的面积a=S△FGE,△HCD的面积b=S△HGE,则得 ;同理,连接FH,设连接FH,设 、 的面积分别为c、d,可求得c+d=S,最后根据 的面积为300,列出方程求解即可.
16.【答案】解:当 时,小路内、外边缘所围成的两个矩形相似.
解得x=1.2
答:当x为1.2m时,小路内、外边缘所围成的两个矩形相似.
【知识点】相似多边形的性质
【解析】【分析】根据两个矩形相似可得比例式,于是可列方程求解。
17.【答案】解:设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,则AQ=AC﹣CQ=16﹣3t(cm),当△APQ∽△ABC时, ,即 ,解得:t= ;当△APQ∽△ACB时, ,即 ,解得:t=4;故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是: s或4s.
【知识点】相似多边形的性质
【解析】【分析】由题意根据路程=速度时间,可将AP、CQ、AQ用含t的代数式表示。因为∠A时公共角,所以以A、P、Q为顶点的三角形与△ABC相似时分两种情况讨论求解:
①当△APQ∽△ABC时,可得比例式,代入可得关于t的方程,解方程即可求解;
②当△APQ∽△ACB时,可得比例式,代入可得关于t的方程,解方程即可求解。
18.【答案】解:如图,设BF、CE相交于点M,
∵菱形ABCD和菱形ECGF的边长分别为2和3,
∴△BCM∽△BGF,
∴=,
即=,
解得CM=1.2,
∴DM=2-1.2=0.8,
∵∠A=120°,
∴∠ABC=180°-120°=60°,
∴菱形ABCD边CD上的高为2sin 60°=2×=,
菱形ECGF边CE上的高为3sin 60°=3×=,
∴阴影部分面积=S△BDM+S△DFM=×0.8×+×0.8×=.
【知识点】相似图形;相似多边形的性质
【解析】【分析】考查相似多边形的性质。
19.【答案】解:(1)有一组角对应相等(或两组对角线对应成比例);
(2)利用AD∥A′E,AB∥A′F,得∠DAB=∠D′A′B′
再利用(1)的结论,得到证明;
(3)∵菱形ABCD∽菱形A′FCE,菱形A′FCE的面积是菱形ABCD面积的一半,
∴菱形ABCD与菱形A′FCE的面积比为2:1,
∴对应边之比为:1,即AC:A′C=:1,
∵AC=,
∴A′C=1,
∴AA′=﹣1.
【知识点】平移的性质;相似多边形的性质
【解析】【分析】相似多边形的性质;平移的性质.
相似多边形的面积的比等于相似比的平方,因而已知面积的比,就可以求出边长的比,求出A′C的长就可以解决.
20.【答案】解:(1)∵A1纸对裁后可以得到两张A2纸,
∴A1纸面积是A2纸面积2倍;
∵设A2纸的长为a,宽为b,则A2纸周长=2(a+b),则A3纸的长是b,宽是,A4纸的长是,宽是,A4纸的长周长=2(+)=a+b,
∴A2纸周长是A4纸周长的2倍.
故答案为:2,2;
(2)∵设A1纸的长和宽分别是m、n,则A2纸的长和宽分别为n,m,
∴=,即=,即该系列纸张的长与宽(长大于宽)之比为:1;
(3)∵A1纸张的重量为a克,A2纸是A1纸面积的一半,
∴A2纸的重量,同理可得出A3纸的重量为a,
同理,A3纸的重量是a克,
∴A8纸张的重量是()7a克.
【知识点】相似多边形的性质
【解析】【分析】(1)根据A1纸对裁后可以得到两张A2纸即可得出A1纸面积是A2纸面积2倍;设A2纸的长为a,宽为b,则A2纸周长=2(a+b),则A3纸的长是b,宽是,A4纸的长是,宽是,A4纸的长周长=2(+)=a+b,由此可得出结论;
(2)设A1纸的长和宽分别是m、n,则A2纸的长和宽分别为n,m,求出的值即可;
(3)A1纸张的重量为a克,A2纸是A1纸面积的一半得出A2纸的重量,同理可得出A3纸的重量,找出规律即可得出结论.
1 / 1人教版初中数学2023-2024学年九年级下学期课时培优练习 27.1图形的相似
一、选择题
1.(2023·舒城模拟)将一张()纸片,以它的一边为边长剪去一个菱形,将余下的平行四边形中,再以它的一边为边长剪去一个菱形,若剪去两个菱形后所剩下的平行四边形与原来相似,则的相邻两边与的比值是(  )
A. B.
C.或 D.或或
【答案】C
【知识点】相似多边形的性质
【解析】【解答】解:如图所示:设AD=a,AB=b,
D C
∴AH=AD,
∴HB=b-a,
∵HB=FG= GC,
∴BG=a-(b-a)= 2a -b,
分两种情况讨论:
①∵剩下的平行四边形与原来平行四边形ABCD相似,
∴,
∴,
设,
∴,
解得:;
②∵剩下的平行四边形与原来平行四边形ABCD相似,
∴,
∴,
设,
∴,
解得:
综上所述: 的相邻两边与的比值是或.
故答案为:C.
【分析】分类讨论,根据相似多边形的性质计算求解即可。
2.(2023九上·鄞州期末)如图,E,F,G,H分别是矩形四条边上的点,连接相交于点I,且,,矩形矩形,连接交于点P,Q,下列一定能求出面积的条件是(  )
A.矩形和矩形的面积之差
B.矩形与矩形的面积之差
C.矩形和矩形的面积之差
D.矩形和矩形的面积之差
【答案】A
【知识点】矩形的性质;相似多边形的性质;相似三角形的判定与性质
【解析】【解答】解:设,

∴,
∴,
∴,


故答案为:A.
【分析】设AE=a,BG=b,由矩形的性质及相似矩形的性质设ED=ka,AG=kb,由平行于三角形一边的直线,截其它两边,所截的三角形与原三角形相似得△CHP∽△CDA,根据相似三角形对应边成比例得PH=a,进而根据S△DPQ=S△DPC-S△DCQ,S矩形BGIF=ab,S矩形EDHI=k2ab,即可得出答案.
3.(2022九上·瑞安期末)如图,,,,是正方形边上的点,且,和将正方形剪切成四片进行重新拼接成四边形,若正方形和四边形的面积之比为,则(  )
A.2 B.3 C. D.
【答案】A
【知识点】菱形的判定与性质;正方形的判定与性质;图形的剪拼;相似多边形的性质;三角形全等的判定(SAS)
【解析】【解答】解:如图,连接,
∵四边形ABCD是正方形,
∴,
∵,
∴,
∴,
∴,
∴四边形EHFG是菱形,
∵,
∴,
∵,
∴,
∴,
∴四边形EHFG是正方形,
∴,
由拼接可知四边形MQPN和四边形A'B'C'D'都是正方形,,,
∴.
∵正方形ABCD和四边形MQPN的面积之比为,
∴正方形ABCD和四边形A'B'C'D'的面积之比为,
∴,
∴,
∴,
∴.
故答案为:A.
【分析】首先证明△AEG≌△BHE≌△CFH≌△DGF,根据全等三角形对应边相等得EG=FG=EH=HF,根据四边相等的四边形是菱形得四边形EHFG是菱形,然后判断出∠EGF=90°,根据有一个内角是直角的菱形是正方形得四边形EHFG是正方形,根据正方形的对角线互相垂直得GH⊥EF,由拼接可知四边形MQPN和四边形A'B'C'D'都是正方形,然后根据正方形面积计算方法及相似多边形的性质可得答案.
4.(2022九上·镇海区期中)如图, 点P是平行四边形内部一点, 过P分别作和的平行线交平行四边 形的四边于. 连结分别交于M和N. 若四边形四边形,且四边形的面积是四边形的3倍. 下列选项正确的是(  )
A. B. C. D.
【答案】D
【知识点】三角形全等及其性质;平行四边形的判定与性质;相似多边形的性质
【解析】【解答】解:∵点P是平行四边形ABCD内部一点, 过P分别作AB和BC的平行线交平行四边形ABCD的四边于E、F、G、H.
四边形四边形,
∴四边形都是平行四边形,且相似,
设,
∵,
∴,即,
∴,

∴,
∵四边形的面积是四边形的3倍.设EP=x,PH=y,BF=kx,BG=ky,
∴,
∴,
∴、、都不成立,
成立,
故答案为:D.
【分析】易得四边形PFBG、DEPH都是平行四边形,且相似,设EP=x,PH=y,BF=kx,BG=ky,易得,从而可得GM=x,FN=y,EM=kx,NH=ky,然后推出△CGM≌△NFA,△CNH≌△MAE,则可得,四边形FBCH的面积是四边形AFPE的3倍,设EP=x,PH=y,BF=kx,BG=ky,进而建立方程求出k的值,从而即可一一判断得出答案.
5.(2019九上·平顶山期中)如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为(  )
A. B. C.1 D.
【答案】B
【知识点】菱形的性质;平移的性质;相似多边形的性质
【解析】【解答】解:∵四边形ABCD是菱形,
∴AC⊥BD,AD=2=CD,∠DCA= ∠BCD=30°,
∴A'D=1,A'C= DA'= ,
∴菱形ABCD的面积=4× ×A'D×A'C=2 ,
如图,
由平移的性质得, ABCD∽ A'ECF,且A'C= AC,
∴四边形A'ECF的面积是 ABCD面积的 ,
∴阴影部分的面积= = ,
故答案为:B.
【分析】先求出菱形ABCD的面积,由平移的性质可得四边形A'ECF的面积是 ABCD面积的 ,即可求解.
6.(2017·泰州)如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是(  )
A.2 B.4 C.6 D.8
【答案】D
【知识点】反比例函数的图象;相似多边形的性质;相似三角形的判定
【解析】【解答】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n, ),
∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,
∴PA=PB,
∵P点坐标(n, ),
∴OD=CQ=n,
∴AD=AQ+DQ=n+4;
∵当x=0时,y=﹣x﹣4=﹣4,
∴OC=DQ=4,GE=OE= OC= ;
同理可证:BG= BF= PD= ,
∴BE=BG+EG= + ;
∵∠AOB=135°,
∴∠OBE+∠OAE=45°,
∵∠DAO+∠OAE=45°,
∴∠DAO=∠OBE,
∵在△BOE和△AOD中, ,
∴△BOE∽△AOD;
∴ = ,即 = ;
整理得:nk+2n2=8n+2n2,化简得:k=8;
故答案为:D.
方法2、如图1,
过B作BF⊥x轴于F,过点A作AD⊥y轴于D,
∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,
∴PA=PB,
∵P点坐标(n, ),
∴A(n,﹣n﹣4),B(﹣4﹣ , )
∴AD=AQ+DQ=n+4;
∵当x=0时,y=﹣x﹣4=﹣4,
∴OC=4,
当y=0时,x=﹣4.
∴OG=4,
∵∠AOB=135°,
∴∠BOG+∠AOC=45°,
∵直线AB的解析式为y=﹣x﹣4,
∴∠AGO=∠OCG=45°,
∴∠BGO=∠OCA,∠BOG+∠OBG=45°,
∴∠OBG=∠AOC,
∴△BOG∽△OAC,
∴ = ,
∴ = ,
在等腰Rt△BFG中,BG= BF= ,
在等腰Rt△ACD中,AC= AD= n,
∴ ,
∴k=8,
故答案为:D.
【分析】求k可求出P的横纵坐标的积即可,设出P坐标(n,),可观察出一组相似三角形△BOG∽△OAC,可得出对应边成比例,用n,k的代数式表示出对应边,代入比例式,变为乘积式后即可求出k.
7.下列说法不一定正确的是(  )
A.所有的等边三角形都相似 B.所有的等腰直角三角形都相似
C.所有的菱形都相似 D.所有的正方形都相似
【答案】C
【知识点】相似图形
【解析】【解答】A、所有的等边三角形都相似,正确;B、所有的等腰直角三角形都相似,正确;C、所有的菱形不一定都相似,故错误;D、所有的正方形都相似,正确.
故选C.
【分析】 利用“对应角相等,对应边的比也相等的多边形相似”进行判定即可.
8.(2023九上·阜阳期中)如图,BD是的对角线,BD⊥AD,AB=2AD=6,点E是CD的中点,点F、P分别是线段AB、BD上的动点,若△ABD∽△PBF,且△PDE是等腰三角形,则PF的长为(  )
A.或 B.或 C.或 D.或
【答案】C
【知识点】等腰三角形的性质;含30°角的直角三角形;勾股定理;相似多边形的性质
【解析】【解答】△PDE是等腰三角形,可分成以下几种情况:当PD=PE时:过点P作PG⊥DE于点G,∴DG=,
在△ABD中,∵∠ADB=90°,AB=2AD=6,
∴∠ABD=30°,BD=,
∵AB∥CD,
∴∠PDG=∠ABD=30°,
∵∠DGP=90°,
∴PD=2PG,
∴,,
∴BP=,
∵△ABD∽△PBF,
∴,
∴PF=;
当DE=DP=3时,BP=,
∴PF=;
当DE=PE=3时,点P与点B重合,这种情况不存在。
综上,PF的长为或.
故答案为:C。【分析】△PDE是等腰三角形可分成几种情况进行讨论:当PD=PE时,过点P作PG⊥DE于点G,可得DG=,进而求得BP的长,然后根据相似三角形的性质得出PF=;当DE=DP=3时,BP=,PF=;当DE=PE=3时,点P与点B重合,这种情况不存在
9.要拼出和图①中的菱形相似的较长对角线为88cm的大菱形(如图②) ,需要如图①的菱形的个数是(  ).
A.11个 B.121个 C.22个 D.242 个
【答案】B
【知识点】相似多边形的性质
【解析】【解答】解: 设需要x个,根据题意,
解得:x=121.
故答案为:B.
【分析】根据相似多边形的面积的比等于相似比的平方列式,求解即可得出答案.
10.(2021九上·瑶海期末)若一个矩形剪掉一个面积最大的正方形,剩下的小矩形与原来的矩形相似,且原矩形的较长边长为,则剩下的小矩形的较短边长为(  )
A. B. C. D.
【答案】D
【知识点】相似多边形的性质
【解析】【解答】解:如图,
设剩下的小矩形的较短边长为xcm,则剩下的小矩形的较长边长为(8-x)cm,
由题意得:∵剩下的小矩形与原来的矩形相似
∴,解得:x
∵(舍去)

故答案为:D
【分析】先求出,再求出x,最后计算求解即可。
二、填空题
11.如图所示,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则的值为   .
【答案】
【知识点】勾股定理;正方形的性质;相似多边形的性质;三角形全等的判定(ASA)
【解析】【解答】解:∵四边形EFGH是正方形,
∴EH=EF,∠HEF=90°,
∴∠AEH+∠BEF=90°,
∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠AEH+∠AHE=90°,∠BEF+∠BFE=90°,
∴∠AEH=∠BFE,∠AHE=∠BEF,
又 EH=EF,
∴(ASA)
∴AE=BF,
∴EF=,
∵两个正方形相似,且相似比,
∴,
∴,
∴,
∴,
又 AE<BE,
∴.
故答案为:.
【分析】题目已知相似比,那么本题的解题思路就是把相似比用AE和BE来表示,其中AB=AE+BE,而EF于BE在同一直角三角形中,很容易联想到用勾股定理,而题目易证AE=BF,而,得,EF也用BE和AE表示出来了,代入相似比得,从而算出,题目告知AE<BE,因此.
12.(2020九上·孝义期末)如图所示,复印纸的型号有A0,A1,A2,A3,A4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸沿较长边的中点对折,就能得到两张下一型号(A4)的复印纸,且得到的两个矩形都和原来的矩形相似,那么这些型号的复印纸的长、宽之比为   .
【答案】
【知识点】相似多边形的性质
【解析】【解答】解:设这些型号的复印纸的长、宽分别为b、a,
∵得到的矩形都和原来的矩形相似,
∴ ,
则 ,
∴ ,
∴这些型号的复印纸的长宽之比为 ,
故答案为: .
【分析】设这些型号的复印纸的长、宽分别为b、a,根据相似多边形的对应边的比相等列出比例式,计算即可.
13.(2019·抚顺模拟)如图,正六边形A1B1C1D1E1F1的边长为1,它的6条对角线围成一个正六边形A2B2C2D2E2F2;正六边形A2B2C2D2E2F2的6条对角线又围成一个正六边形A3B3C3D3E3F3…;如此继续下去,则六边形A4B4C4D4E4F4的面积是   .
【答案】
【知识点】相似多边形的性质
【解析】【解答】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,
∴B1B2= A1B1= ,
∴A2B2= A1B2=B1B2= ,
∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,
∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=( )2= ,
∵正六边形A1B1C1D1E1F1的面积=6× ×1× = ,
∴正六边形A2B2C2D2E2F2的面积= × = ,
同理:正六边形A4B4C4D4E4F4的面积=( )3× = ;
故答案为: .
【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,进而得到正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=( )2= ,结合正六边形A1B1C1D1E1F1的面积=6× ×1× = ,即可得到正六边形A2B2C2D2E2F2的面积,以此类推,即可得到答案.
14.(2023九上·闵行期中)如图,在中,,,点M,N分别在边上,将沿直线翻折,点C恰好落在边上,记为点,如果与相似,那么折痕的长为   .
【答案】5或
【知识点】相似多边形的性质
【解析】【解答】解:在中,,
∴,
∴,,
由折叠的性质知,
要使与相似,即与相似,
∵,
∴是的垂直平分线,设与交于点O,
∴,
如图所示:当时,则,
∴,
∴;
如图所示:当时,则,
∴,
∴,
∴,
同理,,则,
∴,
设中,边上的高为,
∴,
∴,
∵,
∴,
∴;
故答案为:5或.
【分析】分两种情况画出图形,由相似三角形的性质得出对应边成比例,即可求出MN的长度。
15.(2021八下·南岸期末)某地为了更好地保护红军历史博物馆,经过精心的筹备规划,决定把原来博物馆的平面图扩大.如图,已知原来博物馆的平面图是 ,规划后博物馆的平面图是四边形 ,其中点A,B,C,D分别是边 的中点.如果原来博物馆的平面图 的面积为 ,则规划后博物馆的平面图 占地面积为    .
【答案】600
【知识点】平行四边形的判定与性质;相似多边形的性质;三角形的中位线定理
【解析】【解答】解:连接EG,设 、 的面积分别为 a、b,四边形EFGH的面积为S,如图所示.
∵A、B分别是EF、FG的中点,
∴AB是 的中位线,AB∥EG.
∵C、D分别是GH、HE的中点,
∴DC是 的中位线,DC∥EG.




同理,若连接FH,设 、 的面积分别为c、d,可求得


解得,S=600.
故答案为:600
【分析】连接EG,设△FAB、△HCD的面积分别为a、b,四边形EFGH的面积为S,连接EG,根据三角形中位线的性质,可证得AB∥EG,DC∥EG,再利用相似三角形的性质,求得△FAB的面积a=S△FGE,△HCD的面积b=S△HGE,则得 ;同理,连接FH,设连接FH,设 、 的面积分别为c、d,可求得c+d=S,最后根据 的面积为300,列出方程求解即可.
三、解答题
16.(2018九上·碑林月考)如图,一个矩形广场的长为100m,宽为80m,广场外围两条纵向小路的宽均为1.5m,如果两条横向小路的宽都为xm,那么当x为多少时,小路内、外边缘所围成的两个矩形相似.
【答案】解:当 时,小路内、外边缘所围成的两个矩形相似.
解得x=1.2
答:当x为1.2m时,小路内、外边缘所围成的两个矩形相似.
【知识点】相似多边形的性质
【解析】【分析】根据两个矩形相似可得比例式,于是可列方程求解。
17.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?
【答案】解:设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,则AQ=AC﹣CQ=16﹣3t(cm),当△APQ∽△ABC时, ,即 ,解得:t= ;当△APQ∽△ACB时, ,即 ,解得:t=4;故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是: s或4s.
【知识点】相似多边形的性质
【解析】【分析】由题意根据路程=速度时间,可将AP、CQ、AQ用含t的代数式表示。因为∠A时公共角,所以以A、P、Q为顶点的三角形与△ABC相似时分两种情况讨论求解:
①当△APQ∽△ABC时,可得比例式,代入可得关于t的方程,解方程即可求解;
②当△APQ∽△ACB时,可得比例式,代入可得关于t的方程,解方程即可求解。
18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是多少?
【答案】解:如图,设BF、CE相交于点M,
∵菱形ABCD和菱形ECGF的边长分别为2和3,
∴△BCM∽△BGF,
∴=,
即=,
解得CM=1.2,
∴DM=2-1.2=0.8,
∵∠A=120°,
∴∠ABC=180°-120°=60°,
∴菱形ABCD边CD上的高为2sin 60°=2×=,
菱形ECGF边CE上的高为3sin 60°=3×=,
∴阴影部分面积=S△BDM+S△DFM=×0.8×+×0.8×=.
【知识点】相似图形;相似多边形的性质
【解析】【分析】考查相似多边形的性质。
19.八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:
(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.
【答案】解:(1)有一组角对应相等(或两组对角线对应成比例);
(2)利用AD∥A′E,AB∥A′F,得∠DAB=∠D′A′B′
再利用(1)的结论,得到证明;
(3)∵菱形ABCD∽菱形A′FCE,菱形A′FCE的面积是菱形ABCD面积的一半,
∴菱形ABCD与菱形A′FCE的面积比为2:1,
∴对应边之比为:1,即AC:A′C=:1,
∵AC=,
∴A′C=1,
∴AA′=﹣1.
【知识点】平移的性质;相似多边形的性质
【解析】【分析】相似多边形的性质;平移的性质.
相似多边形的面积的比等于相似比的平方,因而已知面积的比,就可以求出边长的比,求出A′C的长就可以解决.
20.如图,An系列矩形纸张的规格特征是:①各矩形纸张都相似;②A1纸对裁后可以得到两张A2纸,A2纸对裁后可以得到两张A3纸,…,An纸对裁后可以得到两张An+1纸.
(1)填空:A1纸面积是A2纸面积的几倍,A2纸周长是A4纸周长的几倍;
(2)根据An系列纸张的规格特征,求出该系列纸张的长与宽(长大于宽)之比;
(3)设A1纸张的重量为a克,试求出A8纸张的重量.(用含a的代数式表示)
【答案】解:(1)∵A1纸对裁后可以得到两张A2纸,
∴A1纸面积是A2纸面积2倍;
∵设A2纸的长为a,宽为b,则A2纸周长=2(a+b),则A3纸的长是b,宽是,A4纸的长是,宽是,A4纸的长周长=2(+)=a+b,
∴A2纸周长是A4纸周长的2倍.
故答案为:2,2;
(2)∵设A1纸的长和宽分别是m、n,则A2纸的长和宽分别为n,m,
∴=,即=,即该系列纸张的长与宽(长大于宽)之比为:1;
(3)∵A1纸张的重量为a克,A2纸是A1纸面积的一半,
∴A2纸的重量,同理可得出A3纸的重量为a,
同理,A3纸的重量是a克,
∴A8纸张的重量是()7a克.
【知识点】相似多边形的性质
【解析】【分析】(1)根据A1纸对裁后可以得到两张A2纸即可得出A1纸面积是A2纸面积2倍;设A2纸的长为a,宽为b,则A2纸周长=2(a+b),则A3纸的长是b,宽是,A4纸的长是,宽是,A4纸的长周长=2(+)=a+b,由此可得出结论;
(2)设A1纸的长和宽分别是m、n,则A2纸的长和宽分别为n,m,求出的值即可;
(3)A1纸张的重量为a克,A2纸是A1纸面积的一半得出A2纸的重量,同理可得出A3纸的重量,找出规律即可得出结论.
1 / 1