江苏省扬州市2023-2024学年高二上学期1月期末检测数学试题(PDF版含答案)

文档属性

名称 江苏省扬州市2023-2024学年高二上学期1月期末检测数学试题(PDF版含答案)
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 苏教版(2019)
科目 数学
更新时间 2024-01-23 22:10:44

文档简介

2023—2024 学年第一学期期末检测
高二数学参考答案 2024.1
1.C 2.D 3.A 4.B 5.A 6.C 7.A 8.D
9. AC 10.BCD 11. ABD 12. BCD
5
13. x 1或3x 4y 5 0(写出一条即可) 14. 2 15.56 16.
5
17.【解析】(1)设等差数列{a }的公差为 d,等比数列n bn 的公比为 q.
b
由b2 2,b 4可得3 q
3 2 ,b b qn 2 2 2n 2 2n 1. ················································3 分 n 2
b2
a a 8 1
则有 a1 b1 1,a b 8.所以 d
8 1 1.
8 4
8 1 8 1
所以 an a1 (n 1)d 1 (n 1) 1 n .
所以 a n,bn 2
n 1 . ···························································································6 分
n
(2) c a b n 1 , n n n =n 2
所以数列 cn 的前 n项和为:
c1 c2 cn (1 1) (2 2) (n 2
n 1) (1 2 3 n) (1 2 22 2n 1)
n(n 1) 1 2n n2 n
2n 1 ················································································10 分
2 1 2 2
18.【解析】(1) f ' (x) 6x2 2ax 12
因为 f (x)在 x 2 处取极小值5 ,所以 f ' (2) 24 4a 12 0 ,得 a 9 ·····························3 分
此时 f ' (x) 6x2 18x 12x 6(x 1)(x 2)
所以 f (x)在 (1,2)上单调递减,在 (2, ) 上单调递增
所以 f (x)在 x 2 时取极小值,符合题意
所以 a 9 , f (x) 2x3 9x2 12x b .
又 f (2) 4 b 5,所以b 1. ············································································6 分
f (x) 2x3(2) 9x
2 12x 1,所以 f
' (x) 6(x 1)(x 2) ···············································8 分
列表如下:
x 0 (0,1) 1 (1,2) 2 (2,3) 3
f
' (x) + 0 - 0 +
f (x) 1 ↗ 极大值 6 ↘ 极小值 5 ↗ 10
························10 分
所以 x [0,3]时, f (x)min f (0) 1 ···············································································12 分
19.【解析】(1)在数列 an 中, Sn 1 2S

n n 1 n N ① Sn 2Sn 1 n n 2 ②
由①-②得: Sn 1 Sn 2(Sn Sn 1) 1,即 an 1 2an 1(n 2) ········································2 分
第 1 页(共 4 页)
{#{QQABDQIAggCAAABAAAgCAwHoCAKQkBAACIoGAEAAoAAAyRNABAA=}#}
所以 an 1 1 2(an 1)(n 2),即bn 1 2bn (n 2)
在①中令 n 1,得 S2 2S1 2,即 a1 a2 2a1 2,而 a1 1,故 a2 3.
则 a2 1 2(a1 1),即b2 2b1,
b
又b1 2 0,所以
n 1 2(n N )
bn
所以数列 bn 是以 2为首项, 2为公比的等比数列,
n
所以bn 2 ·······································································································6 分
1 1 1 1 1 1
(2) c ( ), ······························8 分 n
4(log b )22 n 1 4n
2 1 (2n 1)(2n 1) 2 2n 1 2n 1
1 1 1 1 1 1 1 1 1 1
Tn [( ) ( ) ( )] (1 )
2 1 3 3 5 2n 1 2n 1 2 2n 1 2
1 1
又因为 cn 0,所以T c
4n2
n 1
1 3
1 1
所以 Tn ·········································································································12 分
3 2
x 4
x x 2x 4
20.【解析】(1)设 P x 2, y ,则由题意得 ,即 .
y y
y 2y
2
因为P在圆C : x2 y2 4 上,所以 x 2 y 2 4
2 2 2
即 2x 4 2y 4 ,所以点Q 的轨迹方程为 x 2 y2 1 ·······································5 分
(2)设G a,b ,则b a 2 ,
当 P在圆C 上运动时, MQN 恒为锐角,等价于以MN 中点G 为圆心,3为半径的圆
2
与圆: x 2 y2 1外离. ·······································································9 分
2
所以 a 2 b2 3 1 ,解得 a 2或 a 2
所以线段MN 中点G 的横坐标取值范围为 , 2 2, . ···········································12 分
21.【解析】(1)设抛物线C 的标准方程为 y2 2 px( p 0)或 x2 2 py( p 0),
将 2A坐标代入 y 2 px,得 p 2,所以 y2 4x ;
1 1
将 A坐标代入 2x2 2 py ,得 p ,所以 x y,
4 2
1
所以抛物线C 的标准方程为 2y2 4x 或 x y . ···························································4 分
2
(2)方法 1 由抛物线C 开口向右得标准方程为 y2 4x ,准线 l : x 1, ···························5 分
m 2 2 m 2
设 P( 1,m),Q( 1, m)(m 2),则 lAP : y 2 (x 1) ,即 x y ,
2 m 2 m 2
第 2 页(共 4 页)
{#{QQABDQIAggCAAABAAAgCAwHoCAKQkBAACIoGAEAAoAAAyRNABAA=}#}
2 m 2
x y 2 8 4(m 2) 4(m 2)由 m 2 m 2 得 y y 0,所以 yM yA ,
2 m 2 m 2 m 2
y 4x
2(m 2) 2 m 2 m 2
所以 yM , xM yM ( )
2 ,
m 2 m 2 m 2 m 2
m 2 2 2(m 2)所以M (( ) , ) , ························································································7 分
m 2 m 2
m 2 2(m 2)
用 m代m ,得 N (( )2 , ) ,
m 2 m 2
m2 4
则 kMN , ···································································································9 分
m2 4
2(m 2) m2 4 m 2 m2 4
所以 lMN : y [x ( )
2 ],化简得 lMN : y (x 1)
m 2 m2 4 m 2 m2 4
所以,直线MN 过定点 ( 1,0) . ····················································································12 分
方法 2 由抛物线C 开口向右得标准方程为 y2 4x ,准线 l : x 1, ···································5 分
直线MN 不垂直于 y 轴,设 lMN : x my n,M (x1, y , 1), N(x2 , y2 )
x my n
由 得 y
2 4my 4n 0,所以 y1 y2 4m, y1y2 4n , ·····································7 分 2
y 4x
y 2 y 2 4 4
所以 kMA
1 1 , 所以 lMA : y 2 (x 1), 2
x1 1 y1 y1 2 y1 2 1
4
8 8
令x 1,则 yP 2,同理 yQ 2 . ·······················································9 分
y1 2 y2 2
8(y y
因为 P,Q 关于 x轴对称,所以 y y 1 2
4) 4(n 1)
4 0, 则 n 1P Q .
y1y2 2(y1 y2 ) 4 n 2m 1
所以,直线MN 过定点 ( 1,0) . ···············································································12 分
22.【解析】(1) a 1,b 1时, f (x) ex ln x e(x 0),
f ' (x) ex
1
0对 x 0 恒成立,所以 f (x)在 (0, ) 上单调递增 ····································1 分
x
又 f (1) 0,所以 f (x) 0的解集为 (1, ) . ·····································································2 分
1 1
(2) a b 0时,令m(x) f (x) x2 x 1 ex x2 x 1(x 0) ,则m' (x) ex x 1,
2 2
令 n(x) m' (x),则 n' (x) ex 1 0 对任意 x (0, )恒成立,所以 n(x) 在 (0, ) 上单调递增
又 n(0) 0,所以 n(x) n(0) 0,即m ' (x) 0, 所以m(x)在 (0, ) 上单调递增
又m(0) 0,所以m(x) m(0) 0
1
所以,对任意 x (0, ), f (x) x2 x 1成立 ························································6 分
2
第 3 页(共 4 页)
{#{QQABDQIAggCAAABAAAgCAwHoCAKQkBAACIoGAEAAoAAAyRNABAA=}#}
a xex a
(3)b 1时, ' xf (x) ex a ln x e,(x 0) , f (x) e
x x
①当 a 0 时, f ' (x) 0 对 x 0 恒成立,所以 f (x)在 (0, ) 上单调递增,
又 f (1) 0,所以 f (x)仅有1个零点. ················································································7 分
a
②当 a 0 时,令 g(x) f ' (x), g ' (x) ex 0,所以 f ' (x)在 (0, ) 上单调递增,
x2
令 h(x) xex a,(x 0) ,则 h(0) a 0,h(a) a(ea 1) 0,
又因为 h(x) xex a 在 (0, ) 上单调递增,
所以存在唯一 x0 (0,a),使得 h(x0 ) 0,即 f
' (x0 ) 0 ,
x (0, x )时,0 f
' (x0 ) 0,所以 f (x)在 (0, x )上单调递减; 0
x (x0, ),时, f
' (x0 ) 0 ,所以 f (x)在 (x 上单调递增 0 , )
所以 f (x) f (x0 ) ·······························································································8 分 极小值
若 xx0 1,则 f (x) f (1) 0,所以极小值 f (x)仅有1个零点,此时 a x e
0 e ······················9 分 0
若 0 x0 1,
则 f (x)在 (x , )上递增且 f (1) 00 ,所以 f (x)在 (x0 , ) 上仅有 1个零点,且 f (x0 ) f (1) 0
e

x (0, x )时,0 f (x) e
x a ln x e a ln x e ,所以 f (e a ) 0,
e e

a 0, 0 e a 1,又 x [x0 ,1) 时, f (x) 0, e
a (0, x ) , 0
所以 f (x)在 (0, x )上仅有一个零点, 0
所以 f (x)在 (0, ) 上共有两个零点,此时 xa x0e
0 (0,e) ········································10 分
若 x0 1,
则 f (x)在 (0, x0 )上递减且 f (1) 0,所以 f (x)在 (0, x )上仅有 1个零点,且0 f (x0 ) f (1) 0,
x 1 2 1 1
x (x0 , ) 时,由(2)可知 e x x 1 x,两边取对数得 x ln x,又 e
x x2 x 1 x2 ,
2 2 2
1
所以 f (x) ex a ln x e x2 ax e,
2
不妨取 x max{2x ,a a21 0 2e},则 x1 (x0 , ) 且 f (x1) 0,
又因为 f (x ) 0,所以0 f (x)在 (x , ) 上仅有 1个零点. 0
所以 xf (x)在 (0, ) 上共有两个零点,此时 a x e 00 (e, ) .
综上得:当 a 0 或 a e时,函数 f (x)有 1个零点;
当 a 0 且 a e时,函数 f (x)有 2个零点. ·······················································12 分
第 4 页(共 4 页)
{#{QQABDQIAggCAAABAAAgCAwHoCAKQkBAACIoGAEAAoAAAyRNABAA=}#}2023一2024学年第一学期期末检测
高二数学
2024.1
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题
目要求)
1.直线X+y-1=0的倾斜角为()
B交
C.

D.
4
3
4
3
2.在等比数列{an}中,a=2,a=8,则a=()
A.14
B.16
C.28
D.32
3.某质点沿直线运动,位移S(单位:m)与时间t(单位:s)之间的关系为S(t)=t2+3,则当t=5s时该质
点的瞬时速度为()
A.10m/s
B.11m/s
C.13m/s
D.28m/s
4已知双曲线C:云上-1的一条渐近线方程为y-子×,则实数m的值为()
3
4 m
4
9
B.
C.3
D.9
4
5.已知k为实数,则直线:k-y+k-1=0与圆x2+y2=4的位置关系为()
A.相交
B.相离
C.相切
D.无法确定
6已知M是椭圆兮+y=1上一动点则该点到椭圆短轴端点的距离的最大值为()
9
A.2
B.
C.3v2
D.3-√2
2
7.已知定义在R上的可导函数f(x),其导函数为f'(x),若2f(X)+f'(X)>0,且f(1)=e,则不等式
e2xf(x)-e3>0的解集为()
A.(1+6o)
B.(e,+o)
C.(-01)
D.(-o,e)
8在△ABC中,已知D为边BC上一点,CD=2DB,∠BAD-香若an∠ACB的最大值为2,则常数A的值
为()
V10-3
10+1
A.
B.0+3
C.
D.0-1
4
4
4
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要
求,.全部选对的得5分,有选错的得0分,部分选对的得2分)
9.已知l,2为两条不重合的直线,则下列说法中正确的有()
A.若,2斜率相等,则,山2平行
B.若,l2平行,则l,2的斜率相等
第1页(共4页)
C.若l,l2的斜率乘积等于-1,则l,2垂直
D.若l,2垂直,则l,l2的斜率乘积等于-1
0椭圆c药+与双曲线C0¥k7Xk9A.有相同的焦点
B.有相等的焦距
C.有相同的对称中心
D.可能存在相同的顶点
11.已知函数f(x)=hx
,下列说法中正确的有()
A.函数f()的极大值为上
B.函数f(x)在点(1,0)处的切线方程为y=×-1
C.2023224<2024202
D.若曲线y=f(X)与曲线y=X无交点,则a的取值范围是仁-1,+0
e
12.已知无穷数列{an},a=1.性质s:m,n∈N,am+n>am+an;性质t:m,n∈N',2≤manm1+a+1>am+a,下列说法中正确的有()
A.若a=3-2n,则{an}具有性质s
B.若a=n,则{an}具有性质t
C.若{an}具有性质s,则a之n
D.若等比数列{a}既满足性质s又满足性质t,则其公比的取值范围为(2,+o)
三、填空题(本大题共4小题,每小题5分,共20分)
13.写出过点(12)的被圆C:×2+y2=4所截的弦长为2√3的直线方程▲一(写出一条直线即可)
14.曲率是衡量曲线弯曲程度的重要指标.定义:若f'(×)是f(x)的导函数,f"(x)是f'(x)的导函数,
f"(x
则曲线y=f(x)在点(x,f(x)处的曲率K=
.已知f(x)=2c0s(×-1),则曲线
1+(f'(x)2
y=f(x)在点(1,f(1)处的曲率为▲
15.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶
等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差会成等差数列.
在杨辉之后,对这类高阶等差数列的研究一般称为垛积术”现有高阶等差数列,其前5项分别为1,4,
10,20,35,则该数列的第6项为▲
第2页(共4页)
同课章节目录