广东省东莞市2023-2024学年高一上学期1月教学质量检查(期末)数学试卷(扫描版含答案)

文档属性

名称 广东省东莞市2023-2024学年高一上学期1月教学质量检查(期末)数学试卷(扫描版含答案)
格式 zip
文件大小 1.0MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-01-26 16:41:15

文档简介

2023一2024学年度第一学期教学质量检查
高一数学
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一
项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.
1.已知集合A={-2,-1,0l,2},B={xy=gx},则A∩B=
A.{0l,2}
B.{1,2}
c.{2)
D.{-1,0,l}
2.使>1”成立的一个充分不必要条件是
A.x>1
B.x<1
C.-1D.x>-1
3.己知函数f(x)=
2*,x≤0
1og2x,x>0'
则ff(兮》的值是
A.4
B.
1
C.2
D.
2
4.函数了)=具图象的大致形状是
xe
B一
5.扇形的弧长为15,圆心角为3江,则该扇形的面积为
A
300
A.
B.J50
C.150π
D.300元
6.已知a,b,c为正实数,满足a+a2=b+4=c+log2c=4,则实数a,b,c之间的大小关系为
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a
7.在平面直角坐标系xOy中,半径为2的圆O与y轴非负半轴的交点为。,动点P从P出发,
以1rad/s的角速度按顺时针方向在圆O上做匀速圆周运动,则2s时点P的坐标为
A.(2cos(-2),2sin(-2)
B.(2cos 2,2sin 2)
c.(2sin(-2),2cos(-2)
D.(2sin 2,2 cos2)
8.某企业从2010年开始实施新政策后,年产值逐年增加,下表给出了该企业2010年至2020年
高一数学第1页(共4页)
0000000
的年产值(万元),为了描述该企业年产值y(万元)与新政策实施年数x(年)的关系,现有以
下三种函数模型:y=+b,y=ka(a>0,且a≠1),y=klog。x+b(a>0,且a≠1),选出你
认为最符合实际的函数模型,预测该企业2023年的年产值约为
年份
2010
2011
2012
2013
201420152016
2017
2018
2019
2020
年产值278
309
344
383
427
475528
588
655
729
811
A.924万元
B.976万元
C.1109万元
D.1231万元
二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项
符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.请把正确选项在答题
卡中的相应位置涂黑.
9.下列运算正确的是
A.3lo815=5
B.1
3+In-=1
c.b6=6
27
10.己知a,b,c∈R,则下列说法正确的是
A.若a>b,则a2>b2
B.若a>b,则a>
C.若a>b>0,则ac2>bc
D.若a>b>0,则aa+l
1.已知函数f()=4in(@x+p)4>0,@>0<习的
w
调递增,则实数m的取值可以是



A.
B.元
c.
D.
6
4
2
12.用[x]表示不超过实数x的最大整数,如:【-1.2]=-2,[1.5]=1.己知函数f(x)=cosx+lsin,
函数g(x)=[(x],则下列结论正确的是
A.函数(x)的图象关于y轴对称
B,函数∫(x)是周期函数
C.函数g(x)的值域是{-2,-1,0,1}
D.方程g(x)=2x只有一个实数根
三、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡的相应位置上,
13.
己知sina=。,则cos2a=
高一数学第2页(共4页)
00000002023-2024学年度第一学期教学质量检查
高一数学 参考答案
一、单项选择题
题号 1 2 3 4 5 6 7 8
答案 B A D A B C D C
二、多项选择题(全部选对的得 5分,选对但不全的得 2分,有选错的得 0分)
题号 9 10 11 12
答案 AD BD AB ABD
三、填空题(16题第一空 2分,第二空 3分)
7 1 12
13. 14. 15. f x ln x( f x log a x ( a 1) 均可) 16. 3; 9 4 5
四、解答题
17. 解:(1)当m 2时, A (x, y) | y x 2 ························································ 1分
y x 2 A B (x, y) 则 2 ············································································ 2分
y x
y x 2
方程组 消去 y后得 x22 x 2 0,得 x 1或 x 2 ····································· 3分
y x
当 x 1时, y 1;当 x 2时, y 4 .·································································· 4分
故 A B ( 1,1),(2,4) ;················································································· 5分
y x m
(2) A B ,即方程组 2 无解,····························································6分
y x
即方程 x2 x m 0无解,·················································································7分
1
则 1 4m 0,得m ,···········································································9分
4
1
所以实数 m的取值范围为 m |m .·······························································10分
4
tan cos tan cos
18.解:(1)已知 f tan
sin cos
2
高一数学参考答案 第 1 页 (共 5 页)
{#{QQABAQCAogAoABIAAQhCQwn6CgOQkACAAIoORAAAoAAAyAFABAA=}#}
······················································································································· 3分
所以 f ( ) tan 3;·················································································· 5分
3 3
(2)由(1) f tan ,即 tan sin 2,·············································· 6分
cos
π
又 π,所以 sin 0,cos 0,······························································ 8分
2
且 sin 2 cos2 1··························································································9分
解得 sin 2 5 5 , cos ··········································································11分
5 5
sin cos 3 5 .······················································································12分
5
19. 解:(1)因为函数 f (x)是定义在 R 上的奇函数,所以 f 0 0 .···························· 1分
设 x 0,则 x 0,
1 1
因为 x 0时, f (x) x 1,所以 f ( x) x 1 ·····································3分
x x
又因为 f (x) 1是定义R 上的奇函数,所以 f (x) f x x 1 ··························· 4分
x

x
1
1, x 0
x
故函数 f (x)的解析式为 f x 0, x 0 ;······················································ 5分

x 1 1, x 0
x
(2)函数 f (x)在区间 , 1 上单调递增;·························································6分
1
证明如下:由(1) x , 1 时, f (x) x 1············································· 7分
x
x1, x2 , 1 ,且 x1 x2 时···········································································8分
1 1 f x f x 1 1 1 2 x1 1x
x2 1 x1 x2
1 x 2 x 1 x2
x x x2 x1 x 1 x1x2 1 1 2 x x 1 x2
1 x1 x2 ·····································10分
1 2 x1x2 x1x2
由 x1, x2 , 1 ,得 x1x2 1, x1x2 1 0,又由 x1 x2 ,得 x1 x2 0 ··················11分
高一数学参考答案 第 2 页 (共 5 页)
{#{QQABAQCAogAoABIAAQhCQwn6CgOQkACAAIoORAAAoAAAyAFABAA=}#}
于是 f x1 f x2 ,所以函数 f (x)在区间 , 1 上单调递增.······························ 12分
20. 解:(1)因为 f x 3 cos2 x sin x cos x 3 3 1 cos 2 x sin 2 x 3 ,
2 2 2 2
所以 f x cos 2 x ,··············································································· 2分
6
π y cos 向左平移 个单位后,得到函数 2 x
cos

2 x

··········3分
6 6 6 3 6

因为新函数图象关于原点对称,所以 n n Z ,·································· 4分
3 6 2
即 3n 1,又 0,所以 所有可能取值组成的集合为 | 3n 1,n N ;·· 5分
(2)由(1)知: f x cos 2 x ,因为 0, 2 x 随着 x的增大而增大,···6分
6 6
π
所以当 x (0 , )时, 2 x , ······················································· 7分
6 6 6 3 6
f (x) π 5因为函数 在 (0, )单调递减,所以 ,解得0 ·····················8分
6 6 3 6 2
又由(1)得 3n 1, n N ,所以 n 0时, 1 ···············································9分
f x cos 2x 此时 ,令 f (x) 1 2x ,则 2k , 2k ·············10分
6 2 6 3 3

解得 x k , k k Z ,································································· 11分
4 12
1
所以 f (x) 的解集为 x | k x k ,k Z .···································· 12分
2 4 12
21. 解:(1)作图如下,(说明:对于作图方法和过程不要求说明,作对即得满分)
···················································································· 2分
高一数学参考答案 第 3 页 (共 5 页)
{#{QQABAQCAogAoABIAAQhCQwn6CgOQkACAAIoORAAAoAAAyAFABAA=}#}
由作图过程知: AP A1P1 ·················································································3分
(3)由三角函数定义得 P1 cos , sin , A1 cos , sin ,P cos , sin ,
······················································································································· 4分
由(1)知 AP A1P1 ,根据两点间的距离公式,
得 [cos 1]2 [sin 0]2 cos cos 2 sin sin 2 ,············ 5分
化简得: cos cos cos sin sin ,····················································7分
当角 , 终边重合,即 2k k Z ,容易证明上式仍然成立,························8分
所以对于任意角 , ,有 cos cos cos sin sin .······························9分
sin cos (3)

cos

········································10分 2 2
cos cos sin



sin ;·······························································11分
2 2
sin cos cos sin .················································································ 12分
22. 1 4
x
解:(1)易知函数 f (x)的定义域为 R ,且 f ( x) log (4 x2 1) bx log2 ( x ) bx4
log2 (1 4
x ) 2x bx log2 (1 4
x ) (b 2)x,·························································2分
f (x)为偶函数, f ( x) f (x),则 (b 2)x bx对 x R成立,·························· 3分
得 b 2 b,则 b 1 .························································································· 4分
x
(2)由(1)知,f (x) log (4x2 1) x,设h(x) f (x) x sin log2 4x 1 2x sin x 2 2
log (4
x 1
2 ) sin
x log (1 1 2 ) sin
x
,·····················································6分
4x 2 4x 2
当 x 0,1 时, h x 单调递减,(无需证明)····························································7分
且 h 0 1 0, h 1 log 52 1 0 ·····································································8分4
x 0,1 log 1 1 x0根据函数零点存在定理知: h x 有唯一的零点 0 ,且 2 x sin 0, 4 0 2
······················································································································· 9分
高一数学参考答案 第 4 页 (共 5 页)
{#{QQABAQCAogAoABIAAQhCQwn6CgOQkACAAIoORAAAoAAAyAFABAA=}#}
1
sin x0 log2 1 x
所以 2 2 2 4 0 1 1 ,······································································ 10分
4x0
1 1
而函数 y 1 x 在 0,1 上单调递减,所以当 x 1时, y 1 x 取得最小值,即 x (0,1)时4 4
1 1 5 x ,··································································································· 11分4 4
sin x0
所以 2 2 5 .································································································12分
4
高一数学参考答案 第 5 页 (共 5 页)
{#{QQABAQCAogAoABIAAQhCQwn6CgOQkACAAIoORAAAoAAAyAFABAA=}#}
同课章节目录