首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
华师大版(2024)
七年级下册(2024)
旧版资料
第8章 一元一次不等式
8.3 一元一次不等式组
2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习
文档属性
名称
2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习
格式
zip
文件大小
113.4KB
资源类型
试卷
版本资源
科目
数学
更新时间
2019-03-25 00:01:41
点击下载
文档简介
2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习
一、选择题
1.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。如果设晓明步行的速度为x米/分,则晓明步行的速度范围是( )
A.70≤x≤87.5 B.x≤70或x≥87.5
C.x≤70 D.x≥87.5
【答案】A
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意得:晓明到学校所用的时间为40分到50分之间,路程为3500米,设晓明步行的速度为x米/分, ,解得:70≤x≤87.5;
故答案为:A。
【分析】根据题意晓明到学校所用的时间最少为为40分,最多为50分,根据路程除以时间等于速度即可算出晓明的最大速度及最小速度,从而得出答案。
2.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)如图,是测量一物体体积的过程:
( 1 )将300mL的水装进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的( )
A.10cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
【答案】D
【知识点】一元一次不等式组的应用
【解析】【解答】解:设玻璃球的体积为x,
则有 ,可
解得40
故一颗玻璃球的体积在40cm3以上,50cm3以下,
故答案为:D.
【分析】设玻璃球的体积为x,再根据题意列出不等式:4x<500-300,5x>500-300,化简计算即可得出x的取值范围.
3.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为( )
A.0<x≤1 B.0≤x<1 C.1<x≤2 D.1≤x<2
【答案】A
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得
解之得
故答案为:A.
【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.
4.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)张老师把手中一包棒棒糖准备分给幼儿园小班的小朋友,如果每个小朋友分3个棒棒糖,那么还剩59个;如果前面每一个小朋友分5个棒棒糖,则最后一个小朋友得到了棒棒糖,但不足3个.则张老师手中棒棒糖的个数为( )
A.141 B.142 C.151 D.152
【答案】D
【知识点】一元一次不等式组的特殊解;一元一次不等式组的应用
【解析】【解答】解:设共有x个小朋友,则棒棒糖有3x+59个,再根据最后一个小朋友得到了棒棒糖,但不足3个列出不等式组 ,解得:30.5<x≤31.5.因x为整数,所以x=31,即可得3x+59=152.故答案为:D.
【分析】设共有x个小朋友,则棒棒糖有(3x+59)个, 如果前面每一个小朋友分5个棒棒糖 ,则可以分掉5(x-1)个棒棒糖,由于 最后一个小朋友得到了棒棒糖,但不足3个,可知糖的总数应该不小于[5(x-1)+1]个,同时又小于[5(x-1)+3],从而列出不等式组,求解并取出整数解进而即可算出答案。
5.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有1个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为( )
A.8(x﹣1)<5x+12<8 B.0<5x+12<8x
C.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8
【答案】C
【知识点】一元一次不等式的应用
【解析】【解答】解:设有x人,则苹果有(5x+12)个,由题意得:
0<5x+12﹣8(x﹣1)<8,
故答案为:C.
【分析】设有x人,则苹果有(5x+12)个, 若每位小朋友分8个苹果 ,则被分掉的苹果个数是8(x﹣1)个,还剩下苹果的个数为[5x+12﹣8(x﹣1)]个,这些苹果将全部分给最后一个小朋友,根据最后一个小朋友分到苹果但不到8个苹果即可列出不等式组。
6.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)一种灭虫药粉30kg.含药率是15%.现在要用含药率较高的同种灭虫药粉50kg和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x的范围是( )
A.15%
C.39%
【答案】C
【知识点】一元一次不等式组的应用
【解析】【解答】解:先解出30kg和50kg中的灭虫药粉的含药的总量,再除以总数(50+30kg)即可得出含药率,再令其大于30%小于35%
即
解得:
故答案为:C.
【分析】含药率=纯药的质量÷药粉总质量,关系式为:20%<含药率<35%,把相关数值代入计算即可.
二、填空题
7.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是 .
【答案】 <x≤6
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意有 ,解得 <x≤6.
故x的取值范围是 <x≤6.
故答案为: <x≤6.
【分析】先根据题意列出不等式组,再求解集.
8.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)定义新运算:对于任意实数a,b都有a△b=ab-a-b+1,例如:2△4=2 4-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x的值大于5而小于9,那么x的取值范围是 .
【答案】 <x<
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得: .
故答案: <x< .
【分析】先根据题意列出关于x的不等式组,求出x的取值范围即可.确定解集的法则:同大取大;同小取小;大小小大中间找;大大小小找不到.
9.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)按如下程序进行运算:
并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是 .
【答案】4
【知识点】解一元一次不等式组
【解析】【解答】解:根据题意得:第一次:2x﹣1,
第二次:2(2x﹣1)﹣1=4x﹣3,
第三次:2(4x﹣3)﹣1=8x﹣7,
第四次:2(8x﹣7)﹣1=16x﹣15,
根据题意得:
解得:5<x≤9.
则x的整数值是:6,7,8,9.
共有4个.
故答案是:4.
【分析】根据程序可以列出前四次程序得到的不等式,组成不等式组,即可确定x的整数值,从而求解.
10.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2
cm,若铁钉总长度为a cm,则a的取值范围是 .
【答案】3
【知识点】一元一次不等式组的应用
【解析】【解答】解:第一次为2cm,第二次为1cm,第三次不会超过0.5cm.
设第三次钉入木块的长度为xcm,则0<x≤0.5,
三次钉入的总长度(2+1+x)即为钉子的长,
故钉子的总长度为3<a≤3.5.
故答案为:3<a≤3.5
【分析】由题意可得出a的最大长度为2+1+0.5=3.5cm,以及敲击2次后铁钉进入木块的长度是2+1=3cm,得出最小长度,即可得出答案.
11.(2016八上·海盐期中)已知三个连续自然数之和小于20,则这样的自然数共有 组.
【答案】6
【知识点】一元一次不等式的应用
【解析】【解答】解:设中间自然数为x,
由题意得, ,
解得:1≤x< ,
符合题意的中间自然数有6个,即这样的自然数共有6组.
故答案为:6.
【分析】设中间自然数为x,则x﹣1≥0,3x<20,解不等式,然后找出符合题意的自然数.
12.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为 元/千克.
【答案】10
【知识点】一元一次不等式的应用
【解析】【解答】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,从而得出x≥10.
故答案为:10.
【分析】设售价至少应定为x元/千克,根据“ 有5%的水果正常损耗 ”可知销售的水果占(1-5%),故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.
13.(2017七下·泗阳期末)已知非负数a,b,c满足条件3a+2b+c=4. 2a+b+3c=5. 设s=5a+4b+7c的最大值为m,最小值为n. 则n-m的值为 .
【答案】-2
【知识点】三元一次方程组解法及应用
【解析】【解答】已知,3a+2b+c=4①,2a+b+3c=5②,
②×2 ①得,a+5c=6,a=6 5c,
①×2 ②×3得,b 7c= 7,b=7c 7,
又已知a、b、c为非负实数,
所以,6 5c 0,7c 7 0,
可得, ,
S=5a+4b+7c=5×(6 5c)+4×(7c 7)+7c=10c+2,
所以10 10c 12,
12 10c+2=S 14,
即m=14,n=12,
n m= 2,
故答案为 2.
三、解答题
14.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3,请回答以下问题:
(1)两个语句表达的意思是否一样(不用说明理由)?
(2)把两个语句分别用数学式子表示出来,并选择一个求其解集.
【答案】(1)解:一样
(2)解:①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;
②式子2x﹣1的值不小于1且不大于3可得不等式组
解得:
∴不等式组的解集为:1≤x≤2.
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【分析】(1)关键是分析“在1(含1)与3(含3)之间”及“不小于1且不大于3”的意思即可;
(2)根据题意可得不等式组,然后求解可解答.
15.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
【答案】(1)解:6000元=0.6万元,8000元=0.8万元,
设用A型车厢x节,则用B型车厢(40 x)节,总运费为y万元,
依题意,得y=0.6x+0.8(40 x)= 0.2x+32
(2)解:依题意,得 ,
解得: ,
∴24 x 26,
∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:
①24节A型车厢和16节B型车厢;
②25节A型车厢和15节B型车厢;
③26节A型车厢和14节B型车厢.
【知识点】一元一次不等式组的应用
【解析】【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40-x)节,根据总费用=两种车厢的费用和可得出y与x的表达式;
(2)设A型车厢x节,则挂B型车厢(40-x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,求出解集,再求解集内的整数解可得方案.
16.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆.
(1)若该小区2015年底到2018年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
【答案】(1)解:设家庭轿车拥有量的年平均增长率为x,
则依题意得:64(1+x)2=100,
解得:x1= =25%,x2=- ,(不合题意,舍去).
∴100(1+25%)==125.
答:该小区到2018年底家庭轿车将达到125辆.
(2)解:设该小区可建室内车位a个,露天车位b个.
则:
由①得:b=150-5a代入②得:20≤a≤ ,
∵a是正整数,∴a=20或21.
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.
【知识点】一元一次不等式组的应用;一元二次方程的实际应用-百分率问题
【解析】【分析】(1)设年平均增长率是x,根据某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆可求出增长率,进而可求出到2018年底家庭轿车将达到多少辆.
(2)设建x个室内车位,根据投资钱数可表示出露天车位,根据计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍,可列出不等式组求解,进而可求出方案情况.
17.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.
(1)求A、B的进价;
(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?
(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?
【答案】(1)解:设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏,根据题意得
,
解得x=80,
经检验x=80是原分式方程的解.
则A品牌台灯进价为80元/盏,
B品牌台灯进价为x-30=80-30=50(元/盏),
答:A、B两种品牌台灯的进价分别是80元/盏,50元/盏.
(2)解:设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏,根据题意,有
解得,40≤a≤55.
∵a为整数,
∴该超市有16种进货方案.
(3)解:令超市销售台灯所获总利润记作w,根据题意,有
w=(120-m-80)a+(80-50)(100-a)
=(10-m)a+3000
∵8 m 15
∴①当8<m<10时,即10-m<0,w随a的增大而减小,
故当a=40时,所获总利润w最大,
即A品牌台灯40盏、B品牌台灯60盏;
②当m=10时,w=3000;
故当A品牌台灯数量在40至55间,利润均为3000;
③当10<m<15时,即10-m>0,w随a的增大而增大,
故当a=55时,所获总利润w最大,
即A品牌台灯55盏、B品牌台灯45盏.
【知识点】分式方程的实际应用;一元一次不等式组的应用
【解析】【分析】(1)
设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏, 根据:“1040元购进的A品牌台灯的数量=650元购进的B品牌台灯数量”相等关系,列方程求解可得;
(2) 设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏 ,根据:“3400≤A、B品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;
(3) 令超市销售台灯所获总利润记作w, 利用:总利润=A品牌台灯利润+B品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.
18.(2017·河北模拟)“六一”前夕,某玩具经销商用去2350元购进A,B,C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示
型 号 A B C
进价(元/套) 40 55 50
售价(元/套) 50 80 65
(1)用含x、y的代数式表示购进C种玩具的套数;
(2)求y与x之间的函数关系式;
(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.
①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.
【答案】(1)解:已知共购进A、B、C三种新型的电动玩具共50套,故购进C种玩具套数为:50﹣x﹣y;
(2)解:由题意得40x+55y+50(50﹣x﹣y)=2350,整理得y=2x﹣30;
(3)解:①利润=销售收入﹣进价﹣其它费用,
故:p=(50﹣40)x+(80﹣55)y+(65﹣50)(50﹣x﹣y)﹣200,
又∵y=2x﹣30,
∴整理得p=15x+250,
②购进C种电动玩具的套数为:50﹣x﹣y=50﹣x﹣(2x﹣30)=80﹣3x,
据题意列不等式组 ,解得20≤x≤ ,
∴x的范围为20≤x≤ ,且x为整数,故x的最大值是23,
∵在p=15x+250中,k=15>0,
∴P随x的增大而增大,
∴当x取最大值23时,P有最大值,最大值为595元.此时购进A、B、C种玩具分别为23套、16套、11套.
【知识点】一元一次不等式组的应用;一次函数的实际应用
【解析】【分析】(1)根据购进A,B,C三种新型的电动玩具工50套,可将C种玩具的表示出来;
(2)根据购进三种玩具所花的应,列出不等式,可将y与x的函数关系;
(3)①利用利润=销售总额-进价总额-支出费用,列出函数关系式即可;②个怒u购进的三种玩具都不少于10套,列出不等式组进行求解.
19.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)阅读材料,并回答问题
如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.
(单位:cm)
由此可得,木棒长为__________cm.
借助上述方法解决问题:
一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?
(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.
(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。请问灰太狼有几种抓羊方案?
【答案】(1)解:如图:
点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.
由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N所对应的数为116.
可求MN=52.
所以点A所对应的数为12,点B所对应的数为64.
即美羊羊今年12岁,村长爷爷今年64岁.
(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:
解得: ,则x=4,或x=5,
即抓四只小羊一只老羊或抓五只小羊
【知识点】数轴及有理数在数轴上的表示;一元一次不等式组的应用
【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;
(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.
(3) 设抓小羊x只,则老羊为(5-x)只, 根据“ 所抓羊的年龄之和不超过112岁且高于34岁 ”列不等式组,求解.
1 / 12018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习
一、选择题
1.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。如果设晓明步行的速度为x米/分,则晓明步行的速度范围是( )
A.70≤x≤87.5 B.x≤70或x≥87.5
C.x≤70 D.x≥87.5
2.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)如图,是测量一物体体积的过程:
( 1 )将300mL的水装进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的( )
A.10cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
3.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为( )
A.0<x≤1 B.0≤x<1 C.1<x≤2 D.1≤x<2
4.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)张老师把手中一包棒棒糖准备分给幼儿园小班的小朋友,如果每个小朋友分3个棒棒糖,那么还剩59个;如果前面每一个小朋友分5个棒棒糖,则最后一个小朋友得到了棒棒糖,但不足3个.则张老师手中棒棒糖的个数为( )
A.141 B.142 C.151 D.152
5.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有1个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为( )
A.8(x﹣1)<5x+12<8 B.0<5x+12<8x
C.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8
6.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)一种灭虫药粉30kg.含药率是15%.现在要用含药率较高的同种灭虫药粉50kg和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x的范围是( )
A.15%
C.39%
二、填空题
7.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是 .
8.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)定义新运算:对于任意实数a,b都有a△b=ab-a-b+1,例如:2△4=2 4-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x的值大于5而小于9,那么x的取值范围是 .
9.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)按如下程序进行运算:
并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是 .
10.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2
cm,若铁钉总长度为a cm,则a的取值范围是 .
11.(2016八上·海盐期中)已知三个连续自然数之和小于20,则这样的自然数共有 组.
12.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为 元/千克.
13.(2017七下·泗阳期末)已知非负数a,b,c满足条件3a+2b+c=4. 2a+b+3c=5. 设s=5a+4b+7c的最大值为m,最小值为n. 则n-m的值为 .
三、解答题
14.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3,请回答以下问题:
(1)两个语句表达的意思是否一样(不用说明理由)?
(2)把两个语句分别用数学式子表示出来,并选择一个求其解集.
15.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
16.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆.
(1)若该小区2015年底到2018年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
17.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.
(1)求A、B的进价;
(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?
(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?
18.(2017·河北模拟)“六一”前夕,某玩具经销商用去2350元购进A,B,C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示
型 号 A B C
进价(元/套) 40 55 50
售价(元/套) 50 80 65
(1)用含x、y的代数式表示购进C种玩具的套数;
(2)求y与x之间的函数关系式;
(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.
①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.
19.(2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习)阅读材料,并回答问题
如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.
(单位:cm)
由此可得,木棒长为__________cm.
借助上述方法解决问题:
一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?
(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.
(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。请问灰太狼有几种抓羊方案?
答案解析部分
1.【答案】A
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意得:晓明到学校所用的时间为40分到50分之间,路程为3500米,设晓明步行的速度为x米/分, ,解得:70≤x≤87.5;
故答案为:A。
【分析】根据题意晓明到学校所用的时间最少为为40分,最多为50分,根据路程除以时间等于速度即可算出晓明的最大速度及最小速度,从而得出答案。
2.【答案】D
【知识点】一元一次不等式组的应用
【解析】【解答】解:设玻璃球的体积为x,
则有 ,可
解得40
故一颗玻璃球的体积在40cm3以上,50cm3以下,
故答案为:D.
【分析】设玻璃球的体积为x,再根据题意列出不等式:4x<500-300,5x>500-300,化简计算即可得出x的取值范围.
3.【答案】A
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得
解之得
故答案为:A.
【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.
4.【答案】D
【知识点】一元一次不等式组的特殊解;一元一次不等式组的应用
【解析】【解答】解:设共有x个小朋友,则棒棒糖有3x+59个,再根据最后一个小朋友得到了棒棒糖,但不足3个列出不等式组 ,解得:30.5<x≤31.5.因x为整数,所以x=31,即可得3x+59=152.故答案为:D.
【分析】设共有x个小朋友,则棒棒糖有(3x+59)个, 如果前面每一个小朋友分5个棒棒糖 ,则可以分掉5(x-1)个棒棒糖,由于 最后一个小朋友得到了棒棒糖,但不足3个,可知糖的总数应该不小于[5(x-1)+1]个,同时又小于[5(x-1)+3],从而列出不等式组,求解并取出整数解进而即可算出答案。
5.【答案】C
【知识点】一元一次不等式的应用
【解析】【解答】解:设有x人,则苹果有(5x+12)个,由题意得:
0<5x+12﹣8(x﹣1)<8,
故答案为:C.
【分析】设有x人,则苹果有(5x+12)个, 若每位小朋友分8个苹果 ,则被分掉的苹果个数是8(x﹣1)个,还剩下苹果的个数为[5x+12﹣8(x﹣1)]个,这些苹果将全部分给最后一个小朋友,根据最后一个小朋友分到苹果但不到8个苹果即可列出不等式组。
6.【答案】C
【知识点】一元一次不等式组的应用
【解析】【解答】解:先解出30kg和50kg中的灭虫药粉的含药的总量,再除以总数(50+30kg)即可得出含药率,再令其大于30%小于35%
即
解得:
故答案为:C.
【分析】含药率=纯药的质量÷药粉总质量,关系式为:20%<含药率<35%,把相关数值代入计算即可.
7.【答案】 <x≤6
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意有 ,解得 <x≤6.
故x的取值范围是 <x≤6.
故答案为: <x≤6.
【分析】先根据题意列出不等式组,再求解集.
8.【答案】 <x<
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得: .
故答案: <x< .
【分析】先根据题意列出关于x的不等式组,求出x的取值范围即可.确定解集的法则:同大取大;同小取小;大小小大中间找;大大小小找不到.
9.【答案】4
【知识点】解一元一次不等式组
【解析】【解答】解:根据题意得:第一次:2x﹣1,
第二次:2(2x﹣1)﹣1=4x﹣3,
第三次:2(4x﹣3)﹣1=8x﹣7,
第四次:2(8x﹣7)﹣1=16x﹣15,
根据题意得:
解得:5<x≤9.
则x的整数值是:6,7,8,9.
共有4个.
故答案是:4.
【分析】根据程序可以列出前四次程序得到的不等式,组成不等式组,即可确定x的整数值,从而求解.
10.【答案】3
【知识点】一元一次不等式组的应用
【解析】【解答】解:第一次为2cm,第二次为1cm,第三次不会超过0.5cm.
设第三次钉入木块的长度为xcm,则0<x≤0.5,
三次钉入的总长度(2+1+x)即为钉子的长,
故钉子的总长度为3<a≤3.5.
故答案为:3<a≤3.5
【分析】由题意可得出a的最大长度为2+1+0.5=3.5cm,以及敲击2次后铁钉进入木块的长度是2+1=3cm,得出最小长度,即可得出答案.
11.【答案】6
【知识点】一元一次不等式的应用
【解析】【解答】解:设中间自然数为x,
由题意得, ,
解得:1≤x< ,
符合题意的中间自然数有6个,即这样的自然数共有6组.
故答案为:6.
【分析】设中间自然数为x,则x﹣1≥0,3x<20,解不等式,然后找出符合题意的自然数.
12.【答案】10
【知识点】一元一次不等式的应用
【解析】【解答】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,从而得出x≥10.
故答案为:10.
【分析】设售价至少应定为x元/千克,根据“ 有5%的水果正常损耗 ”可知销售的水果占(1-5%),故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.
13.【答案】-2
【知识点】三元一次方程组解法及应用
【解析】【解答】已知,3a+2b+c=4①,2a+b+3c=5②,
②×2 ①得,a+5c=6,a=6 5c,
①×2 ②×3得,b 7c= 7,b=7c 7,
又已知a、b、c为非负实数,
所以,6 5c 0,7c 7 0,
可得, ,
S=5a+4b+7c=5×(6 5c)+4×(7c 7)+7c=10c+2,
所以10 10c 12,
12 10c+2=S 14,
即m=14,n=12,
n m= 2,
故答案为 2.
14.【答案】(1)解:一样
(2)解:①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;
②式子2x﹣1的值不小于1且不大于3可得不等式组
解得:
∴不等式组的解集为:1≤x≤2.
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【分析】(1)关键是分析“在1(含1)与3(含3)之间”及“不小于1且不大于3”的意思即可;
(2)根据题意可得不等式组,然后求解可解答.
15.【答案】(1)解:6000元=0.6万元,8000元=0.8万元,
设用A型车厢x节,则用B型车厢(40 x)节,总运费为y万元,
依题意,得y=0.6x+0.8(40 x)= 0.2x+32
(2)解:依题意,得 ,
解得: ,
∴24 x 26,
∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:
①24节A型车厢和16节B型车厢;
②25节A型车厢和15节B型车厢;
③26节A型车厢和14节B型车厢.
【知识点】一元一次不等式组的应用
【解析】【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40-x)节,根据总费用=两种车厢的费用和可得出y与x的表达式;
(2)设A型车厢x节,则挂B型车厢(40-x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,求出解集,再求解集内的整数解可得方案.
16.【答案】(1)解:设家庭轿车拥有量的年平均增长率为x,
则依题意得:64(1+x)2=100,
解得:x1= =25%,x2=- ,(不合题意,舍去).
∴100(1+25%)==125.
答:该小区到2018年底家庭轿车将达到125辆.
(2)解:设该小区可建室内车位a个,露天车位b个.
则:
由①得:b=150-5a代入②得:20≤a≤ ,
∵a是正整数,∴a=20或21.
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.
【知识点】一元一次不等式组的应用;一元二次方程的实际应用-百分率问题
【解析】【分析】(1)设年平均增长率是x,根据某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆可求出增长率,进而可求出到2018年底家庭轿车将达到多少辆.
(2)设建x个室内车位,根据投资钱数可表示出露天车位,根据计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍,可列出不等式组求解,进而可求出方案情况.
17.【答案】(1)解:设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏,根据题意得
,
解得x=80,
经检验x=80是原分式方程的解.
则A品牌台灯进价为80元/盏,
B品牌台灯进价为x-30=80-30=50(元/盏),
答:A、B两种品牌台灯的进价分别是80元/盏,50元/盏.
(2)解:设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏,根据题意,有
解得,40≤a≤55.
∵a为整数,
∴该超市有16种进货方案.
(3)解:令超市销售台灯所获总利润记作w,根据题意,有
w=(120-m-80)a+(80-50)(100-a)
=(10-m)a+3000
∵8 m 15
∴①当8<m<10时,即10-m<0,w随a的增大而减小,
故当a=40时,所获总利润w最大,
即A品牌台灯40盏、B品牌台灯60盏;
②当m=10时,w=3000;
故当A品牌台灯数量在40至55间,利润均为3000;
③当10<m<15时,即10-m>0,w随a的增大而增大,
故当a=55时,所获总利润w最大,
即A品牌台灯55盏、B品牌台灯45盏.
【知识点】分式方程的实际应用;一元一次不等式组的应用
【解析】【分析】(1)
设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏, 根据:“1040元购进的A品牌台灯的数量=650元购进的B品牌台灯数量”相等关系,列方程求解可得;
(2) 设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏 ,根据:“3400≤A、B品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;
(3) 令超市销售台灯所获总利润记作w, 利用:总利润=A品牌台灯利润+B品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.
18.【答案】(1)解:已知共购进A、B、C三种新型的电动玩具共50套,故购进C种玩具套数为:50﹣x﹣y;
(2)解:由题意得40x+55y+50(50﹣x﹣y)=2350,整理得y=2x﹣30;
(3)解:①利润=销售收入﹣进价﹣其它费用,
故:p=(50﹣40)x+(80﹣55)y+(65﹣50)(50﹣x﹣y)﹣200,
又∵y=2x﹣30,
∴整理得p=15x+250,
②购进C种电动玩具的套数为:50﹣x﹣y=50﹣x﹣(2x﹣30)=80﹣3x,
据题意列不等式组 ,解得20≤x≤ ,
∴x的范围为20≤x≤ ,且x为整数,故x的最大值是23,
∵在p=15x+250中,k=15>0,
∴P随x的增大而增大,
∴当x取最大值23时,P有最大值,最大值为595元.此时购进A、B、C种玩具分别为23套、16套、11套.
【知识点】一元一次不等式组的应用;一次函数的实际应用
【解析】【分析】(1)根据购进A,B,C三种新型的电动玩具工50套,可将C种玩具的表示出来;
(2)根据购进三种玩具所花的应,列出不等式,可将y与x的函数关系;
(3)①利用利润=销售总额-进价总额-支出费用,列出函数关系式即可;②个怒u购进的三种玩具都不少于10套,列出不等式组进行求解.
19.【答案】(1)解:如图:
点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.
由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N所对应的数为116.
可求MN=52.
所以点A所对应的数为12,点B所对应的数为64.
即美羊羊今年12岁,村长爷爷今年64岁.
(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:
解得: ,则x=4,或x=5,
即抓四只小羊一只老羊或抓五只小羊
【知识点】数轴及有理数在数轴上的表示;一元一次不等式组的应用
【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;
(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.
(3) 设抓小羊x只,则老羊为(5-x)只, 根据“ 所抓羊的年龄之和不超过112岁且高于34岁 ”列不等式组,求解.
1 / 1
点击下载
同课章节目录
第6章 一元一次方程
6.1 从实际问题到方程
6.2 解一元一次方程
6.3 实践与探索
第7章 一次方程组
7.1 二元一次方程组和它的解
7.2 二元一次方程组的解法
7.3 三元一次方程组及其解法
7.4 实践与探索
第8章 一元一次不等式
8.1 认识不等式
8.2 解一元一次不等式
8.3 一元一次不等式组
第9章 多边形
9.1 三角形
9.2 多边形的内角和与外角和
9.3 用正多边形铺设地面
第10章 轴对称、平移与旋转
10.1 轴对称
10.2 平移
10.3 旋转
10.4 中心对称
10.5 图形的全等
点击下载
VIP下载