江苏省无锡市2023-2024学年高二上学期期终教学质量调研测试数学试卷(PDF版含答案)

文档属性

名称 江苏省无锡市2023-2024学年高二上学期期终教学质量调研测试数学试卷(PDF版含答案)
格式 zip
文件大小 3.0MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-01-30 07:25:30

文档简介

无锡市2023年秋学期高二期终教学质量调研测试
1已知双曲线C:手苦-10>06>0的左,右焦点分别为R,R,点P是C的右支上一点
12.已知0为坐标原点,点A(2,1)在抛物线C:2=2p四(p>0)上,抛物线的焦点为F,过点
2024.1
B(O,-)的直线I交抛物线C于P,Q两点(点P在点B,Q的之间),则(▲)
数学
PE⊥PE,PE与y轴交于点M.若FO=3OM(O为坐标原点),则双曲线C的渐近线方
A,直线AB与抛物线C相切
命题单位:锡山区教师发展中心
制卷单位:无锡市教育科学研究院
程为(▲)
B.0p.00=6
一、单选题:本题共8小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符
C.y=±V3x
D.y=t3x
合题目要求的.
A归±5:B,y6
C.若P是线段BQ的中点,则2PF=|QF
1.直线V5x+3y-2=0的倾斜角是(▲)
8,已知等比数列{a,}的前n项和为S。,则下列说法一定正确的是(▲)
D.存在直线1,使得PF+OF=2BF
D.
A.若S0>0,则4,>0
B.若S4>0,则a>0
A.2
B.
C.若S,m>0,则a,>0
D.若S,4>0,则a,>0
三、填空题:本题共4小题,每小题5分,共20分
2.己知等比数列{a,}的各项均为正数,公比q=2,且满足a,a。=16,则a,=(▲)
二、多项选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题
13.记等差数列{a}的前n项和为S,己知S。=6,S=21,则S2=▲
目要求全部选对的得5分,有选错的得0分,部分选对的得2分
A.2
B.4
C.8
D.16
9.已知方程
m+2m+51(m为实数)表示的曲线C,则(▲)
14.写出一个同时满足下列条件①②的圆的方程:
3.如图,在平行六面体ABCD-4B,CD,中,E为BC延长线上一点,
①与圆x2+y2=1相切,②与x轴相切.
A.曲线C不可能表示一个圆
BC=2CE,则D,E可以表示为(▲)
15.已知正四面体ABCD的每条棱长都等于1,点E,F分别是BC,AD的中点,则AE.CF的
B.曲线C可以表示焦点在x轴上的椭圆
值为▲
A.AB+AD+
B.AB+AD-A
C.曲线C可以表示焦点在y轴上的椭圆
16设F是双曲线C=a>06>0的右焦点,0为坐标原点,过F作C的一条新近
C.AB+AD+
D.AB+AD-A4
D.曲线C可以表示焦点在y轴上的双曲线
线的垂线,垂足为H,若△FOH的内切圆与x轴切于点B,且BF=OB,则C的离心
10.已知空间三点A(0,x,0,B(2,2,0),C(-1,3,),则下列结论正确的有(▲)
4.已知两条直线4:x+(m+1)y-2=0,4:mx+2y+4=0,则“m=1”是“(∥1”的(▲)
率为▲
A.存在唯一的实数x使AB⊥AC
四、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤
A.充分不必要条件
B.必要不充分条件
B.对任意实数x,A,B,C三点都不共线
C当:=1时,丽与C夹角的余激雅是图
17.给出以下三个条件:①S=15;②a,4,4,成等比数列:③a,=3a,·请从这三个条件中
C.充要条件
D.既不充分也不必要条件
任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分
5.《周牌算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、
D.当x=1时,m=L,-2,5)是平面ABC的一个法向量
已知公差不为0的等差数列{a,}的前n项和为S,S=1,▲
惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列若冬至、大
11.设等差数列{an}的前n项和为Sn,公差为d.a,>0,ao+a1>0,a。a,<0,则下列结论
(1)求数列{a,}的通项公式:
寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则立春的日影子长为(▲)
A.10.5尺
B.11.5尺
C.12.5尺
D.13.5尺
正确的是(▲)
(2)若b=3”,令c.=a,b,求数列{C}的前n项和T。.
A.d<0
6.已知抛物线x2-4y的焦点为F,点P为抛物线上动点,点Q为圆(x-)+(y-4)=1上动点,
B.当S。>0时,n的最大值为21
则Pg+PF的最小值为(▲)
C数列侣}为等差数列且公为
A.5
B.4
C.3
D.2
D.记数列号}的前”项和为工,则不,最大
高二数学试卷第1页(共6页)
高二数学试卷第2页(共6页
高二数学试卷第3页(共6页无锡市 2023 年秋学期高二期终教学质量调研测试
数学参考答案与评分标准 2024.1
一、单项选择题
1. D 2. C 3. B 4. C 5. C 6. B 7. A 8. A
二、多项选择题
9. A C D 10. B D 11. A D 12. AC
三、填空题
1 1 1 5
13. 45 14.答案不唯一如 (x )2 y2 15. 16.
2 4 2 3
17. (1)设数列 an 的公差为 d
选择①,由题意得 S5 5a1 10d 15,又 S1 a1 1,则 d 1,所以 an = 1+ (n -1) = n;4分
a 3 2选择②,由 1,a3, a9成等比数列,得a1a9 a2,即1 8d 1 2d ,
解得 d 1,或 d 0 (舍去),所以 an n;······································································4分
选择③,由 a6 3a2 ,得1 5d 3 1 d ,解得 d 1,所以 an n.······································ 4分
(2)由题意知, cn n 3
n
∴Tn 1 3 2 3
2 3 33 n 1 3 n 1 n 3 n ①
3Tn 1 3
2 2 33 3 34 n 1 3 n n 3 n 1 ②···················································· 6分
①-②得
3 1 3n
2T 2 3 4 n

n 3 3 3 3 3 n 3
n 1 n 3 n 1 3 1 n 3 n 1
1 3 2 2
T 3 n 1 3n 1 3 2n 1T 3
n 1
∴ n ,即 n .······························································10分4 2 4 4 4
18. 2 2 2(1)设圆的标准方程为 (x a) (y b) r r 0 ,
a2 (3 b)2 r 2,
2
由题意得 (2 a) (1 b)2 r 2,··················································································2分

a b 1 0.
解得: a 2,

b 3,

r
2 4.
高二数学答案 第 1页,共 6页
{#{QQABJQ4EogiAAAJAAQgCQwEqCkEQkAEACIoGQFAEMAAAyRFABAA=}#}
································································································································5分
所以圆的标准方程为 (x 2)2 (y 3)2 4 ;···································································6分
(2)当直线的斜率不存在时, x 4符合题意,································································ 7分
当直线斜率存在时,设该斜率为 k,此时直线方程为 y 6 k x 4 ,
即 kx y 4k 6 0,圆心 2,3 到该直线的距离为 r,
2k 3 4k 6 5
即 d 2,解得 k ,··································································· 10分
1 k 2 12
此时直线方程为5x 12y 52 0,
故所求直线方程为 x 4和5x 12y 52 0 .···································································12分
19. 建立如图所示的坐标系
A (1,0,1),B 1 1则 1 1(1,1,1),E(0,0, ),F (1,1, ),C1(0,1,1), A(1,0,0).2 2
································································································································

AE ( 1,0, 1
1
(1)因为 ),FC1 ( 1,0, ),所以 AE / /FC1 ,2 2
即 AE / /FC1,
所以点 F到直线 AE的距离即为直线 FC1 到直线 AE的距离.
································································································································2分

AE 2 5 5 u ( ,0, ), AF (0,1, 1). ····································································· 4分
| AE | 5 5 2
2
AF 5 , AF 5 u ,
4 10
FC 5 5 30所以直线 1 到直线 AE的距离为 ( )2 . ·················································· 6分
4 10 5

(2)设平面 AB1E的一个法向量为 n x, y, z ,

AB1 (0,1,1), AE ( 1,0,
1), AA1 (0,0,1) .2
n AB1 y z 0,
由 1
n AE x z 0, 2
高二数学答案 第 2页,共 6页
{#{QQABJQ4EogiAAAJAAQgCQwEqCkEQkAEACIoGQFAEMAAAyRFABAA=}#}

令 z 2,则 y 2, x 1,即 n (1, 2, 2) .··································································· 8分
因为 AE / /FC1,所以FC1 //平面 AB1E,
所以直线 FC1 到平面 AB1E的距离等于C1到平面 AB1E的距离.····································· 10分

C B n
C1B1
1 1
1,0,0 ,所以C1到平面 AB1E
1
的距离为 ,
n 3
1
所以直线 FC1 到平面 AB1E的距离为 .·······································································12分3
20. 因为 Sn n n 1 nan 1,所以 Sn 1 n n 1 n 1 an n 2 ,
两式相减得 an 2n nan 1 n 1 an,即 an 1 an 2 n 2 ,······································· 3分
又 S1 2 a2,所以 a2 a1 2,
所以 an 是首项为 2,公差为 2 的等差数列,
所以 an 2 n 1 2 2n .······················································································· 5分
1 1(2) 2nb ,n bn 1
1 1 1 1 1 1
∴ 2n, 2 n 1 , , 2 2b b b b b b , 将 它 们 累 加 得 :n n 1 n 1 n 2 2 1
1 1
n2 n 2.
b b ····································································································8分n 1
1
∴bn 2 ,········································································································ 10分n n
S 1 1则 n
1 1
1 1
1 2 2 3 n n 1 n 1 .···························································12分
21. 2 2 2解:(1)△ABC中,由余弦定理, AC AB BC 2AB BC cos ABC 12,
AB2所以, AC2 BC2 ,
因此,AB⊥AC ········································································································· 1分
又 PB⊥AC,
所以,AC⊥平面 PAB,
因此,平面 PAB⊥平面 ABCD,······················································································3分
高二数学答案 第 3页,共 6页
{#{QQABJQ4EogiAAAJAAQgCQwEqCkEQkAEACIoGQFAEMAAAyRFABAA=}#}
(2)在等边三角形△PAB中,取 AB中点 O,连接 OP,
则OP AB,
因此,OP⊥平面 ABCD.
以 OB所在直线为 x轴,过 O平行于 AC的直线为 y轴,OP所在直线为 z轴,建立如图所
示的空间直角坐标系,
则 B(1,0,0),P(0,0, 3), A( 1,0,0),D( 3,2 3,0),

所以 AP (1,0, 3), AD ( 2,2 3,0),·······································································5 分

设平面 PAD的法向量 n (x, y, z),

AP n x 3z 0
则 ,取 n ( 3,1, 1), ····························································7分
AD n 2x 2 3y 0
由题意, B(1,0,0),E( 3 , 3, 3 ),
2 2

BE 5 ( , 3, 3 ),
2 2

BF BP PC ( 1,0, 3) ( 1,2 3, 3) ( 1,2 3 , 3 3 ),

设平面 BEF的法向量m (x, y, z),

BE m 5 x 3 3y z 0
则 ,

2 2
BF m ( 1)x 2 3 y 3(1 )z 0

取m (2 3 3,3 2,4 1), ··············································································9分

又平面 PAD的法向量 n ( 3,1, 1),
| 5 4 | 3
所以 | cos m,n | ,
5 37 2 32 8 5
整理得, 26 2 11 1 0,
1 1解得, (舍去 ). ····················································································· 12分
2 13
高二数学答案 第 4页,共 6页
{#{QQABJQ4EogiAAAJAAQgCQwEqCkEQkAEACIoGQFAEMAAAyRFABAA=}#}
c 3
22. 解:(1)由题意, 2a 4, ,且 a2 b2 c2 ,
a 2
所以 a 2,b 1,c 3 ,
x2
因此,椭圆C的标准方程为 y2 1.········································································ 1分
4
设直线 l: x my 4(m 0),M (x1, y1), N (x2 , y2 ), y1 y2 ,
x my 4

x
2 4y2 4
消去 x得, (m2 4)y2 8my 12 0,
0,得m 2 3 ,
y 8m 1 y2 m2 4
所以, (*), ··················································································· 2分
y1y
12
2 m2 4
y y
联立直线 AN: y 2 (x 2)与直线 BM: y 1 (x 2),
x2 2 x1 2
x 2 y (x 2) y (my 2) my
得 1 2 1 2 1
y2 2y1 , ························································ 4分
x 2 y2 (x1 2) y2 (my1 6) my1y2 6y2
3
由(*)式可得,my1y2 (y1 y ),2 2
1
x 2 y
3
1 y2 1
所以 2 2 ,
x 2 3 y 9 y 3
2 1 2 2
解得 x 1,即点 G 的横坐标为 1. ············································································6分
1
S GA GM sin AGM1 2 GM GA 1 x1 1 ( 2) 1 x 1(2) 1
1
S2 GB GN sin BGN GB GN 2 ( 1) x2 ( 1) 3 x2 1
2
3 ( y1 1) 3
1 my1 3 1 2 y 1 y 2 1 ,···································································8分
3 my2 3 3 3 ( y2 1) 3 3 y2
2 y1
令 t y 1 1,
y2
高二数学答案 第 5页,共 6页
{#{QQABJQ4EogiAAAJAAQgCQwEqCkEQkAEACIoGQFAEMAAAyRFABAA=}#}
(y1 y2 )
2 y
因为 1
y
2 2 t 1 2,且m 2 3
y1y2 y2 y1 t
1 (
8m )2
t 2 m
2 4 16m
2 16
所以 2 (4,
16), ···········································10分
t 12 3(m 4)
2 3(1
4
) 3
m 4 m2
即 4 t 1 16 2 ,
t 3
1
解得 t 3且 t 1,又 t 1 1,所以 t 1,
3 3
S t 1 1
因此 1 ( , ). ······························································································ 12分
S2 3 9 3
高二数学答案 第 6页,共 6页
{#{QQABJQ4EogiAAAJAAQgCQwEqCkEQkAEACIoGQFAEMAAAyRFABAA=}#}
同课章节目录