2023 年秋期高中一年级期终质量评估
数学试题参考答案
一、选择题
题号 1 2 3 4 5 6 7 8
答案 C D C D B C C C
二、选择题
题号 9 10 11 12
答案 BC CD AB ABD
三、填空题(本大题共 4小题,每小题 5分,共 20分)
13. ( ,2) 14. 0.06 15. 28 16. e2
四、解答题(本大题共 6小题,共 70分.解答应写出文字说明、证明过程或演算步骤)
17.【解析】
(1)证明 ∵ a 0,b 0,a b 1,
1 1
∴ (1 1 )(a b) b a 2 ( ) 4 ,··········································3分
a b a b a b
(当且仅当 a b时等号成立)·······························································4分
1 1
∴ 4.················································································5分
a b
(2)由于 0 x 1,可将 x看作(1)中的 a,1 x看作(1)中的b,················6分
1 1
根据(1)的结论,则 4,
x 1 x
1
当且仅当 x 时,等号成立,··························································8分
2
1 1
所以 的最小值为4 ·······························································9分
x 1 x
所以有m2 3m 4成立,解得: 1 m 4 .
所以 m的取值范围为 1,4 ···································································10分
18.【解析】
(1)因为 f (x) 2 f ( x) 2x 12 ,①
高一数学参考答案 第 1 页(共 6 页)
{#{QQABRQQAggigAgAAAQgCQwlaCkEQkBAACIoGhFAIMAAASQNABAA=}#}
所以 f ( x) 2 f (x) 2x 12 ,②·····················································2分
由①②可解得: f x =-2x 4.·····················································5分
(2)由题知: 2a+b 4,···································································6分
∴4a+2b=22a+2b 2 22a 2b 2 22a b=2 24=8 ····························10分
(当且仅当 22a=2b ,即 2a=b=2时取“=”).·······································11分
∴ 4a+2b的最小值为 8.···································································12分
19.【解析】
(1)由0.005 20 0.005 20 0.0075 20 0.02 20 a 20 0.0025 20 1,
解得 a 0.01 .···················································································2分
即数学成绩在:
30,50 频率0.0050 20 0.1, 50,70 频率0.0050 20 0.1,
70,90 频率0.0075 20 0.15, 90,110 频率0.0200 20 0.4,
110,130 频率0.0100 20 0.2, 130,150 频率0.0025 20 0.05,··············4分
所以平均分是:
40 0.1 60 0.1 80 0.15 100 0.4 120 0.2 140 0.05 93 .····················6分
(2)由(1)知样本数据中数学考试成绩在 110分以下所占比例为0.1 0.1 0.15 0.4 0.75,
在 130分以下所占比例为 0.75 0.2 0.95,·············································8分
因此,80%分位数一定位于 110,130 内,··············································9分
110 20 0.8 0.75由 115,·····························································11分
0.95 0.75
所以样本数据的80%分位数约为 115.····················································12分
20.【解析】
1
(1)设“该同学第 11题只选一个选项”为事件 A,则 P A ,
3
1
设“该同学第 11题选的一个选项是正确的”为事件 B,则 P B ,
2
易知“该同学第 11题得 2分”等价于“该同学第 11题只选一个选项且该选项正确”,
高一数学参考答案 第 2 页(共 6 页)
{#{QQABRQQAggigAgAAAQgCQwlaCkEQkBAACIoGhFAIMAAASQNABAA=}#}
所以 P AB P A P B 1 .···························································6分
6
1
(2)由(1)可知“该同学第 12题得 2分”的概率为 ,
6
该同学选两个选项的情况有 AB, AC , AD,BC ,BD,CD六种情况,正确的只有一种,
1
则事件“该同学选的两个选项是正确的”的概率为 ,······························8分
6
1 1 1
所以事件“该同学每个题得 5分”的概率为 ,·····························10分
6 3 18
事件“该同学第 11题和第 12题总共得 7分”等价于事件“该同学一个题得 2分,
另一个题得 5分”,·············································································11分
1 1 1
则概率为 2 .·······································································12分
6 18 54
21.【解析】
(1)由 g(x) 2得: (1 log4 x)(log2 x 1) 2 .············································1分
令 t log4 x,则不等式可化为: (1 t)(2t 1) 2,·································2分
t 3解之得: 或t 1.
2
即 log4 x
3
或 log4 x 1
1
,解得0 x ,或 x 4 ,·······························4分
2 8
1
故不等式的解集是 (0, ] [4, ).·······················································5分
8
(2)当 x [2,4] log x [1时, 4 ,1],2
g(x) 2(log4 x)
2 log4 x 1 2(log
1 2 9
4 x ) ,4 8
所以 g(x) [0,2].·············································································6分
由题可知[0,2]是函数 f (x) x2 ax 1, x [2,4]值域的子集······················7分
高一数学参考答案 第 3 页(共 6 页)
{#{QQABRQQAggigAgAAAQgCQwlaCkEQkBAACIoGhFAIMAAASQNABAA=}#}
(法一:)当 a 4时, f (x) [ f (2), f (4)],
即[0,2] [5 2a,17 4a],解得 a [5 ,15] .···········································8分
2 4
当 a 8时, f (x) [ f (4), f (2)],即[0, 2] [17 4a,5 2a],
此时无解,故不存在这样的实数 a .··························································9分
a 2
当 4 a 6时, f (x) [ f ( ), f (4)],即[0,2] [1 a ,17 4a],
2 4
此时无解,故不存在这样的实数 a .·························································10分
f (x) [ f (a
2
当6 a 8时, ), f (2)],即[0,2] a [1 ,5 2a],
2 4
此时无解,故不存在这样的实数 a .·························································11分
5 15
综上所述,a [ , ].·····································································12分
2 4
(法二:)
又 f (x)max max{ f (2), f (4)},
故 f (2) 2或 f (4) 2 15,得 a .······················································9分
4
当a 15 a 15 a 时, ,即有 2,此时函数 f (x)在[2,4]单调递增,·······10分
4 2 8 2
故 f (x) [ f (2), f (4)],即[0,2] [5 2a,17 4a] a [5 ,15,故 ] .············12分
2 4
(法三:)由题可知[0,2]是函数 f (x) x2 ax 1, x [2,4]值域的子集,··········7分
所以 x1, x2 [2,4],使得 f (x1) 0且f (x2 ) 2,····································8分
2 1
对于 x1 [2,4],使得 x1 ax1 1 0成立,即 x1 [2,4]使得 a x1 x 成立.1
1
所以 a (x )min, x [2,4],易得 a
5
.··············································9分
x 2
高一数学参考答案 第 4 页(共 6 页)
{#{QQABRQQAggigAgAAAQgCQwlaCkEQkBAACIoGhFAIMAAASQNABAA=}#}
1
对于 x 22 [2,4],使得 x2 ax2 1 2成立,即 x2 [2,4]使得 a x2 x 成立.2
a (x 1所以 )max, x [2,4],····························································10分x
y x 1 15由函数 在[2,4]上单调递增,易得 a .·································11分
x 4
a [5 15综上可得: , ] ·······································································12分
2 4
22.【解析】
1
(1)由题意, a 0,即 (1 x)( ax a 1) 0.
1 x
又 f (x)为奇函数,所以函数 f (x)的定义域关于原点对称,
a 1 1
则必有 1,得 a .···························································2分
a 2
故 f (x)的定义域为 ( 1,1).·································································3分
因为 f (x)为奇函数,所以 f (0) 0,即 log2 (a 1) b 0,b 1.···········4分
a 1验证:当 ,b 1 1 x 1 x 1 x 时, f (x) log2 ,而 f ( x) log log ,2 1 x 2 1 x 2 1 x
即 f (x) f ( x),所以 f (x)是奇函数.···············································5分
1
综上:a ,b 1.···········································································6分
2
f (x) log 1 x(2)由(1)知, x2 , x ( 1,1) ,于是 2 (0,1),故 x ( ,0) .······7分1 x
因为 f (2x ) x 2m,所以 2m f (2x ) x恒成立.
1 2x x
设 y f (2x ) x log 1 2 2 x log ,1 2x 2 2x (1 2x )
高一数学参考答案 第 5 页(共 6 页)
{#{QQABRQQAggigAgAAAQgCQwlaCkEQkBAACIoGhFAIMAAASQNABAA=}#}
令 t 2x ,则 t (0,1),即 y log
t 1
2 2 ,············································9分t t
1
再令 n t 1,则 n (1, 2) y log,得 2 (n 2) 3 , ···························10分
n
2
因为 n 2 2,当且仅当 n 2 时“=”成立,所以 y log2 (3 2 2),n
故2m log2 (3 2 2),可得m log2 (1 2) ······································11分
所以实数 m的取值范围为 ( , log2 (1 2)) ··········································12分
高一数学参考答案 第 6 页(共 6 页)
{#{QQABRQQAggigAgAAAQgCQwlaCkEQkBAACIoGhFAIMAAASQNABAA=}#}2023年秋期高中一年级期终质量评估
数学试题
注意事项:
1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题
卡的指定位置上,在本试卷上答题无效.
2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上·
3.选择题答案使用2B铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳
素笔书写,字体工整,笔迹清楚.
4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
5.保持卷面清洁,不折叠、不破损。
第I卷选择题(共60分)
一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是
符合题目要求的.)
1.已知集合A=1,2,3,4,5),B=(x∈N2∈N,记A-B=(x∈A,且x¢B.则下
列等式成立的是
A.AUB=A
B.A∩B=A
C.A-B={1,2}
D.B-A=Φ
2.下列各组函数中是同一个函数的是
A.f(x)=√x2,g(x)=(√无)2
B.f(x)=x2,g(x)=(x+1)2
C-1
D.fx)=x+8@)=+月
3.一元二次方程(x一a)(x一a一2)=0有一个正实根和一个负实根的充分不必要条件是
A.a∈(-2,1)
B.a∈(-2,0)
C.a∈(-1,0)
D.a∈(-1,1)
4.如图,一高为H的球形鱼缸,匀速注满水所用时间为T.若鱼缸水深
为h时,匀速注水所用的时间为t,则函数h=f(t)的图像大致是
01
T
D
1
5.设集合A=[0,合),B=[2,1],函数f(x)=
x+2x∈A,
若函数
2-2x,x∈B.
g(x)=f(x)一x2+x一m恰有两个零点,则实数m的取值范围是
A.(
B[哈)
C[o,]
D.[0,2
高一数学第1页(共4页)
6.因学校政治老师比较紧缺,高一年级为了了解学生选科中包含“政治”这一科目的学生人
数便于安排教学.从高一年级中随机抽取了五个班,把每个班选科中包含“政治”的人数作
为样本数据.已知样本平均数为7,样本方差为4,且样本数据各不相同,则样本数据中的
最大值为
A.8
B.9
C.10
D.11
7.已知某种奖券的中奖率为,为了保证中奖率大于0,至少应该购买的奖券数为(参考数
据1g2≈0.3010,1g3≈0.4771)
A.4
B.5
C.6
D.7
8.已知函数f(x)的图像向左平移1个单位后关于y轴对称,当x1[fx)-f,)](x-x)>0恒成立,设a=f品,b=f(1og3),c=f),则a,bc的
大小关系为
A.c>a>b
B.c>6>a
C.a>c-b
D.6>a>c
二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目
要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)
9.下列情境适合用古典概型来描述的是
A.向一条线段内随机地投射一个点,观察点落在线段上不同位置
B.五个人站一排,观察甲乙两人相邻的情况
C.从一副扑克牌(去掉大、小王共52张)中随机选取1张,这张牌是红色牌
D.某同学随机地向靶心进行射击,这一试验的结果只有有限个:命中10环,命中9环…
命中1环和脱靶
f2z+a,x<2,
10.已知函数f(x)=
log2x,x≥2,
若f(x)存在最小值,则实数a的可能取值为
A.-1
B.0
C.1
D.2
11.甲乙两人约定玩一种游戏,把一枚均匀的骰子连续抛掷两次,游戏规则有如下四种,其中
对甲有利的规则是
A.若两次掷出的点数之和是2,3,4,5,6,10,12其中之一,则甲获胜,否则乙获胜
B.若两次掷出的点数中最大的点数大于4,则甲获胜,否则乙获胜
C.若两次掷出的点数之和是偶数,则甲获胜;若两次掷出的点数之和是奇数,则乙获胜
D.若两次掷出的点数是一奇一偶,则甲获胜;若两次掷出的点数均是奇数或者偶数,则乙
获胜
12.已知a=3z,b=4x+1,c=1og3(x+3),则下列结论一定成立的是
A.若aB若x=-是,则aC若6>c,则x(-青,+o)
1
D.若x=2,则6>2c
高一数学第2页(共4页)