第三单元 运算律 人教版数学 四年级下册(含解析)

文档属性

名称 第三单元 运算律 人教版数学 四年级下册(含解析)
格式 docx
文件大小 200.3KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2024-02-01 13:27:58

图片预览

文档简介

第三单元 运算律
人教版数学 四年级下册
一、填空题
1.用字母表示加法结合律是( ),乘法分配律是( )。
2.28×4×5=28×(4×5),运用了( ),该运算定律用字母表示是( )。
3.2400÷(24×10)=2400÷( )÷( ) 125×12×8=( )×12 85×101=85×( )+85
4.算式“a×37+b×8”可以简便计算,那么,a可以是( ),b可以是( )。
5.王伯伯家有一块菜地,种着西红柿和黄瓜(如图),这块菜地的面积是多少平方米?
方法一:西红柿的面积是( ),黄瓜的面积是( ),所以这块菜地的面积是( )。
方法二:菜地的面积是大长方形,它的长是( ),宽是( ),面积也可以这样计算( )。
通过比较:菜地的面积=( )=( )。
我发现:两个数的和与一个数相乘,可以先把它们与这个数分别( ),再( ),这叫乘法分配律,用字母可以表示为( )。
6.聪聪在计算32×(99+1)时,写成了32×99+1,结果比原来少了( )。
7.一列地铁从起点A站出发,车上有652人,经过C站时有152人下车,又有234人上车;经过D站时有87人下车,又有166人上车。此时车上一共有( )人。
8.不计算,在下面的括号填上“>”“<”或“=”。
5×40÷10( )25+40×10
840÷28( )8400÷4÷7
82﹣36÷12( )(84﹣36)÷12
432÷6×9( )432÷(6×9)
二、判断题
9.72×101-72=72×100.( )
10.a+54+46=a+(54+46)这是运用了加法结合律。( )
11.计算47×24+47×56的简便算法是47×(24+47)。( )
12.一个乘数不变,另一个乘数乘2,积也乘2。( )
13.马虎计算255÷15时,错算成255÷5,他只要再除以10就能得到正确的答案。( )
三、选择题
14.运用了( )。
A.乘法交换律 B.乘法结合律 C.乘法分配律 D.加法分配律
15.下面各式中有三个是错误的,它们是( )。
②③
④⑤
A.①②③ B.①③④ C.②③④ D.③④⑤
16.一个计算器按键“6”坏了,计算125×56时,下列算法错误的是( )。
A.125×8×7 B.125×57-125
C.125×55+1 D.125×48+125×8
17.计算大长方形的面积,可以根据下边的两幅图示列出两种不同的算式。这两个算式让你想到的运算律是( )。
A.加法结合律 B.乘法结合律
C.乘法交换律 D.乘法分配律
18.运用了( ),运用了( )。
A.乘法交换律;乘法分配律 B.乘法结合律;乘法分配律
C.乘法分配律;乘法交换律 D.以上都不对
四、计算题
19.在括号里填上合适的数。
23+( )=100 25×( )=100 32=8×( )
34+( )=100 125×( )=1000 88=8×( )
98=100-( ) 50×( )=1000 12=4×( )
20.用你喜欢的方法计算下面各题。
(1)312×4+188×4 (2)101×87
(3)135×50×2 (4)25×33×4
五、解答题
21.实验小学二、四年级学生向山区捐赠一些图书,二、四年级捐赠的图书分别装了16箱、36箱,每箱装了40本图书。四年级同学比二年级同学多捐多少本图书?
22.小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?
23.服装店购进某种衬衫24件,进货价是90元/件,按照每件115元卖出后,一共可以赚多少元钱?
24.奶牛场有5个牛棚,每个牛棚里有4头奶牛,奶牛场一天共喂360kg饲料。平均每头奶牛一天喂多少千克饲料?(用两种方法解答)
25.学校联合旅行社举行“社会大课堂实践研学活动,旅行社推出“红旗渠大峡谷一日游”的两种方案:
该学校4位教师带领四(2)班40位同学一起参加研学活动,他们选用哪种方案更合算?
参考答案:
1. a+b+c=a+(b+c) (a+b)×c=a×c+b×c
【分析】加法结合律的特点是三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。乘法分配律的特点是两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加;依此填空即可。
【详解】加法结合律:a+b+c=a+(b+c)
乘法分配律:(a+b)×c=a×c+b×c
【点睛】熟练掌握加法结合律和乘法分配律的特点是解答此题的关键。
2. 乘法结合律
【分析】由题意可知,28×4×5与28×(4×5)的积相同,符合乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
【详解】由乘法结合律的内容可知,28×4×5=28×(4×5)运用了这个定律;
用字母表示为:
【点睛】本题主要考查乘法结合律以及其字母表示的方法,应熟练掌握相关知识点并灵活运用。
3. 24 10 125×8 100
【分析】(1)根据除法的性质进行解答;
(2)根据乘法交换律进行解答;
(3)根据乘法分配律进行解答。
【详解】(1)2400÷(24×10)=2400÷24÷10
(2)125×12×8=125×8×12
(3)85×101=85×100+85
【点睛】本题主要考查学生对乘法运算律的掌握和灵活运用。
4. 8 13
【分析】根据乘法分配律的定义,a×c+b×c=(a+b)×c,进行解答即可。
【详解】利用乘法分配律进行简算,a可以是8,b可是13;
8×37+13×8
=8×(37+13)
=8×50
=400
(答案不唯一)
【点睛】本题主要考查学生对于乘法分配律的理解和掌握。
5. ac bc ac+bc a+b c (a+b)c ac+bc/(a+b)c (a+b)c/ac+bc 相乘 相加 (a+b)c=ac+bc
【分析】观察图示,种西红柿和黄瓜的菜地,长分别为a和b,宽是c,根据长方形面积=长×宽进行解答;两种方法求菜地总面积,用2个长方形面积相加或看成一个长方形进行计算。方法不同,但结果相同,再通过两个结果的不同表达方式寻找规律即可。
【详解】方法一:西红柿的面积是ac,黄瓜的面积是bc,所以这块菜地的面积是ac+bc。
方法二:菜地的面积是大长方形,它的长是a+b,宽是c,面积也可以这样计算:(a+b)c。
综合方法一、二,菜地面积=ac+bc=(a+b)c。
通过不同的计算方法可发现,两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫乘法分配律,用字母可以表示为(a+b)c=ac+bc。
【点睛】本题主要考查乘法分配律的应用,便于学生熟练掌握。
6.31
【分析】用原算式减去错误的算式,计算出结果即可解答。
【详解】32×(99+1)-(32×99+1)
=32×99+32-32×99-1
=32×99-32×99+32-1
=31
【点睛】本题主要考查学生对乘法分配律的掌握和灵活运用。
7.813
【分析】车上有652人,经过C站时有152人下车,又有234人上车,则此时车上有652-152+234人。经过D站时有87人下车,又有166人上车,则此时车上有652-152+234-87+166人。
【详解】652-152+234-87+166
=(652-152)+(234+166)-87
=500+400-87
=900-87
=813(人)
所以此时车上一共有813人。
故答案为:813。
【点睛】理清量与量之间的关系,根据题意列式计算,观察数据特点和运算符号,运用加法交换律和加法结合律进行简算。
8. < = > >
【分析】(1)观察算式,左边是5×40÷10,5×40=200,再除以一个大于1的数,积要小于200,右边25+40×10,40×10=400,再加上一个大于0的数,结果大于400,所以左边算式的结果小于右边;
(2)根据除法的性质,8400÷28=8400÷(4×7)=8400÷4÷7;
(3)左边82﹣36÷12中36÷12=3,82减去3的差接近80;(84﹣36)÷12中,如果84除以12等于7,那么84减去36,再除以12的结果要小于7,所以左边算式的结果大于右边算式的结果;
(4)根据除法的性质,432÷(6×9)=432÷6÷9,是连除算式,432÷6×9是先除以6,再乘9,所以结果要大于432÷6÷9,即左边算式的结果大于右边算式的结果。
【详解】5×40÷10<25+40×10 840÷28=8400÷4÷7
82﹣36÷12>(84﹣36)÷12 432÷6×9>432÷(6×9)
【点睛】解决本题注意观察算式的特点,根据算式的不同选择合适的方法进行比较。
9.√
【分析】乘法分配律是指两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。据此解答。
【详解】72×101-72=72×(101-1)=72×100
故答案为:√。
【点睛】乘法分配律是乘法运算中非常重要的定律,需熟练掌握。
10.√
【分析】加法结合律是指三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。据此判断即可。
【详解】根据加法结合律的定义可知,a+54+46=a+(54+46),加数位置不变,改变了运算顺序,运用了加法结合律。
故答案为:√
【点睛】本题考查学生对加法结合律的认识和掌握情况。
11.×
【分析】乘法分配律是指两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变;据此解答即可。
【详解】计算47×24+47×56的简便算法是47×(24+56),而不是47×(24+47)。
故答案为:×。
【点睛】乘法分配律是乘法运算中非常重要的定律,需熟练掌握,达到能认会用的地步。
12.√
【详解】根据因数与积的变化规律:一个因数不变,另一个因数扩大10倍、100倍……,积也扩大10倍、100倍……一个乘数不变,另一个乘数乘2,积也乘2,此题说法正确。
故答案为:√
13.×
【分析】先把15分解成5×3,再根据除法的性质进行简算。
【详解】255÷15
=255÷(5×3)
=255÷5÷3
=51÷3
=17
所以马虎计算255÷15时,错算成255÷5,他只要再除以3就能得到正确的答案,原题说法错误。
故答案为:×
【点睛】本题考查了根据除法的性质进行简算的方法。
14.B
【分析】乘法结合律是指三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。据此解答即可。
【详解】运用了乘法结合律。
故答案为:B。
【点睛】乘法结合律是乘法运算中重要的定律,应熟练掌握,达到能认会用的地步。
15.B
【分析】①混用了除法的运算性质,故错误;
②根据乘法分配律,即可判断;
③根据乘法分配律,即可判断;
④根据减法的运算性质,即可判断;
⑤根据除法的运算性质,即可判断;
【详解】①a÷(b+c)≠a÷b+a÷c,计算的时候应该先算括号里的,再算除法;故错误;
②a×b-b×c=b×(a-c),此题运用了乘法分配律,因此正确;
③ba+ca根据乘法分配律应该等于a×(b+c),故错误;
④a-(b+c)根据减法运算的性质变为a-b-c。没有注意运算符号的改变,故错误;
⑤(b+c)÷a=b÷a+c÷a是除法的运算性质,因此正确
故答案为:B。
【点睛】此题考查了运算性质和运算定律,正确掌握运算性质和运算定律是解答此题的关键。
16.C
【分析】要计算125×56,而按键“6”坏了,可以将56拆成(8×7),算式变为125×8×7;也可以将56拆成(57-1),则算式变为125×57-125;还可以将56拆成(48+8),则算式变为125×48+125×8;据此判断即可。
【详解】A.125×56=125×(8×7)=125×8×7,符合题意;
B.125×56=125×(57-1)=125×57-125,符合题意;
C.125×56≠125×55+1,不符合题意;
D.125×56=125×(48+8)=125×48+125×8,符合题意。
故答案为:C
【点睛】当计算器中数字键坏了后,可以运用加减乘除法将不能按出的数字转换成别的算式,再进行解答。
17.D
【分析】加法结合律的特点是三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
乘法结合律的特点是三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
乘法交换律的特点是两个数相乘,交换两个因数的位置,积不变。
乘法分配律的特点是两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。长方形的面积=长×宽,依此选择即可。
【详解】(16+5)×7=16×7+5×7,因此这两个算式让你想到的运算律是乘法分配律。
故答案为:D
【点睛】熟练掌握加法结合律、乘法结合律、乘法交换律、乘法分配律的特点,是解答此题的关键。
18.B
【分析】根据对乘法运算定律的理解,乘法结合律:a×b×c=a×(b×c),乘法分配律:a×(b+c)=a×b+a×c,据此解答。
【详解】,三个数相乘,先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律。
44个250等于4个250加上40个250,所以是,这是乘法分配律。
故答案为:B
【点睛】本题考查的是乘法运算定律的灵活运用,需要细心观察等号两边式子的变化。
19. 77 4 4 66 8 11 2 20 3
【解析】略
20.(1)2000;(2)8787;
(3)13500;(4)3300;
【分析】(1)312×4+188×4此题根据乘法分配律的特点进行简算;
(2)101×87此题先将101写成100+1,然后根据乘法分配律的特点进行简算;
(3)135×50×2此题根据乘法结合律的特点进行简算;
(4)25×33×4此题先交换33与4的位置,然后再依次计算。
【详解】(1)312×4+188×4
=(312+188)×4
=500×4
=2000
(2)101×87
=(100+1)×87
=100×87+87
=8700+87
=8787
(3)135×50×2
=135×(50×2)
=135×100
=13500
(4)25×33×4
=25×4×33
=100×33
=3300
21.800本
【分析】根据题意,用四年级捐书的数量减去二年级捐书的数量即可,因此:四年级捐的箱数×40-二年级捐书的箱数×40=四年级同学比二年级同学多捐的数量,依此列式并计算即可。
【详解】36×40-16×40
=(36-16)×40
=20×40
=800(本)
答:四年级同学比二年级同学多捐800本。
【点睛】此题考查的是乘法分配律的实际运用,熟练掌握乘法分配律的特点是解答此题的关键。
22.87
【分析】先把30×(□+3)用乘法分配律化简;然后再与30×□+3 比较即可。
【详解】30×(□+3),
=30×□+30×3,
=30×□+90,
30×□+90﹣(30×□+3),
=30×□+90﹣30×□﹣3,
=90﹣3,
=87;
答:他得到的结果与正确结果相差87。
【点睛】本题先观察这两个算式的区别在什么地方,再对其中的一个变形,变成相接近的形式,进而求解。
23.600元
【分析】已知衬衫的进货价每件90元,零售价每件115元,那么每件赚115-90=25(元),24件可以赚25×24元,据此计算即可解答。
【详解】(115-90)×24
=25×24
=600(元)
答:一共可以赚600元。
【点睛】解答思路:先求出每件衬衫赚的钱数,再求24件赚的钱数。
24.18千克
【分析】方法一:可先用饲料的总重量除以牛棚的个数计算出每个牛棚喂饲料的重量,然后用每个牛棚喂饲料的重量除以每个牛棚奶牛的头数即可,因此列式为:饲料的总重量÷牛棚的个数÷每个牛棚奶牛的头数=平均每头奶牛一天喂饲料的重量;
方法二:可先用牛棚的个数乘每个牛棚奶牛的头数计算出奶牛的总头数,然后用饲料的总重量除以奶牛的总头数即可,因此列式为:饲料的总重量÷(牛棚的个数×每个牛棚奶牛的头数)=平均每头奶牛一天喂饲料的重量。依此列式并计算。
【详解】方法一:
(千克)
方法二:
(千克)
答:平均每头奶牛一天喂18千克饲料。
【点睛】此题考查的是运用整数除法的性质解决实际问题,应熟练掌握。
25.方案一
【分析】先求出两种方案的花销,再比较哪种方案钱数最少,此种方案就是最合算的。
【详解】方案一:
4×110+110×40÷2
=440+2200
=2640(元)
方案二:
(40+4)×80
=40×80+4×80
=3200+320
=3520(元)
3520>2640,方案一更合算。
答:方案一更合算。
【点睛】本题主要考查学生对整数四则混合运算知识的掌握和灵活运用。