2023~2024学年度模块检测试题
高一数学试题参考答案及评分标准
2024.01
一、单选题:本题共 8小题,每小题 5分,共 40分.
1-4 CDAA 5-8 CBAB
二、多选题:本题共 4小题,每小题 5分,共 20分.
9.BD 10.ABD 11.BD 12.ABC
三、填空题:本题共 4小题,每小题 5分,共 20分.
13. 6 14. 3
15.4 16. 2,
3 3
四、解答题:本题共 6小题,共 70分.解答应写出文字说明、证明过程或演算步骤.
17.解:(1)∵角 3 3的终边与单位圆的交点为M ( , y0),∴cos .···················· 2分5 5
∵ (3 , 2 ),∴ sin 0,∴ sin 1 cos2
4
.································· 5分
2 5
cos sin cos sin 1 tan
(2)原式 .················································ 8分
cos tan sin tan
4
tan sin 4
1 1
又∵ 3,∴原式 4 .·····························································10分cos 3 4
3
18.解:(1)当 a 1时,方程 f x 0即为 f x x 2 2x 1 0,
所以 x 2 0或 2x 1 0,解得 x 2或 x 0;·························································· 4分
(2)由 f x 0可得 x 2 2x a 0,
①当 a 0时,可得 2x a 0,不等式等价为 x 2 0,
此时不等式解集为 2, ;·······························································································6分
x 2 0 x 2 0
当 a 0时,不等式等价为 x 或 .
2 a 0 2
x a 0
高一数学参考答案 第 1 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}
x
②当 0 a 4时,方程 x 2 2 a 0有两根,即 x1 2, x2 log2 a,且 2 log2 a;
此时不等式解集为 , log2 a 2, ;···································································· 8分
x
③当 a 4时,方程 x 2 2 a 0仅有一根,即 x 2,此时不等式解集为R ;···
················································································································································10分
④当 a 4 x时,方程 x 2 2 a 0有两根,即 x1 2, x2 log2 a,且 2 log2 a;
此时不等式解集为 , 2 log2 a, .····································································· 12分
4 1 2π
19.解:(1)由题可得 A 1,T 2 3 3
2,则 π,···························2分
T
x 5 5 π当 时, f x 取得最大值,则 π 2kπ,
6 6 2
π
解得 2k k Z ,·························································································· 4分
3
π π
又因为 ,故 ,所以 f x sin πx
π
,············································ 6分2 3 3
g x sin π π则 x .····································································································· 8分
2 3
π π
(2)由(1)可知 g x sin x ,
2 3
π π π 3π 5 11
令 2kπ x 2kπ,则 4k x 4k, k Z,
2 2 3 2 3 3
故 g x 5 11 的单调递减区间为 4k, 4k k Z .················································· 10分 3 3
则 k 0时, g x 在 51,2 上的单调递减区间为 , 2 .·················································12分 3
19.解:(1) f x 为二次函数,则a 0,
当a 0时,二次函数图象开口向上,不等式 f x 0不对一切实数 x都成立,不满足题意;
当a 0时,则有 16 4a 0,解得a 4 .
故当 a , 4 时,不等式 f x 0对一切实数 x都成立.······································ 4分
高一数学参考答案 第 2 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}
(2)i.当 f x 仅有一个零点时,由 16 4a 0 a 4,
x 4 1此时零点为 ,符合题意;········································································· 6分
2a 2
ii.当 f x 有两个零点时, 16 4a 0 a 4 .
①当 f 1 0 a 5,则由 f x 5x 2 4x 1 0 1解得另一个零点为 x ,符合
5
题意;······································································································································8分
2 1
②当 f 1 0 a 3,则由 f x 3x 4x 1 0解得另一个零点为 x ,
3
符合题意;····························································································································10分
③当 f 1 f 1 0,由零点存在定理,则 f 1 f 1 a 5 a 3 0,解得
a 3,0 0,5 .
综上,f x 在区间 1,1 内恰有一个零点时,实数 a的取值范围为 4 3,0 0,5 .
················································································································································12分
π
21.解:(1) f sin
π 2cos2 π 1 1 .·································································· 2分
6 6 6
2 f x sin 2x π 2cos2 x 3( ) 1 sin 2x
1
cos2x cos2x
6 2 2
3
sin 2x 1 π cos 2x sin 2x
,·········································································6分2 2 6
π
由 2kπ π π 2x 2kπ,
2 6 2
π π
得 kπ x kπ, k Z,
3 6
π π
所以 f x 的单调递增区间是 kπ, kπ k Z .··········································8分 3 6
π
(3)因为 x 0,m ,所以 2x , 2m .·················································· 10分6 6 6
高一数学参考答案 第 3 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}
依题意 2π 2m π 3π 11π 17π,解得 m .
6 12 12
11π 17π
所以 m的取值范围为 , .················································································ 12分 12 12
22.解:(1)令 x1 x2 1,则 f 1 f 1 f 1 ,即 f 1 0,·························· 1分
令 x1 x2 1,则 f 1 f 1 f 1 ,即 f 1 0,·································2分
令 x1 x 0, x2 1,则 f x xf 1 f x ,即 f x f x ,
故 f x 是奇函数.··················································································································4分
f x x f x ff x x x f x x f x 1 2 1 x2 (2)∵ 1 2 1 2 2 1 ,则 ,x1x2 x1 x2
即 g x1x2 g x1 g x2 ,····························································································5分
g x g x x1 g x g x 则 1 2 2 1 ,即 g x1
g x2 g
x1
,··············· 6分
x2 x2 x2
x x
令 x1 x2 0,则 1 1, g 1 0,x2 x2
∴ g x1 g x2 0,即 g x1 g x2 ,
故 g x 在 0, 上单调递减,························································································ 8分
又∵ g f x f x f x x g x ,则 g x 是偶函数,···················· 9分
x x x
∴ g x 2 g x 2 , g x g x ,即 g x 2 g x ,························ 10分
x 2 0
则 x 0 ,解得1 x 2或 x 2,
x 2 x
故不等式 g x 2 g x 的解集为 1,2 2, ····················································12分
高一数学参考答案 第 4 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}秘密★启用前 试卷类型 :A
2023~2024 学年度第一学期学科素养诊断试题
高 一 数 学
2024.01
一、单选题:本题共 8小题,每小题 5分,共 40分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.已知集合 A {钝角}, B {第二象限角},C {小于 180°的角},则
A. A B B.B C C. A B D. B C
2. sin18 cos63 sin 72 sin117 的值为
1 1
A. B. C 2. D 2.
2 2 2 2
3.设 a 30.7 ,b log0.7 0.8
3
, c tan ,则 a,b,c的大小关系为
4
A. c b a B.b a c
C.b4.下列函数既是奇函数又在 ( 1,1)上是增函数的是
A. y sin x B. y 2 C. y 2x 2 x D. y lg(x 1)
x
5.已知函数 f (x) sin( x π 2π )( 0),若 f (x)在[0, ]上有两个零点,则 的取
3 3
值范围是
5 5 11 5 5
A.[ , ) B.[ , ) C.[ ,4) D.[ ,3)
2 2 2 2 2
6.已知命题 p: x2 3x 10 0,命题 q: x>m2﹣m 3,若 p是 q的充分不必要条
件,则实数 m的取值范围是
A.[ 1, 2] B. ( , 1] [ 2, )
C. ( , 1) ( 2, ) D. ( 1, 2)
1
7 f (x) (
1)x log x g(x) 1 ( )x 2.已知函数 2 , x , h(x) (
1)x x 2 在区间 (0, )内的零
2 2 2
高一数学试题第 1 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}
点分别是 a,b,c,则 a,b,c的大小关系为
A. a b c B. b c a C. c a b D. b a c
8.左图是杭州 2023年第 19届亚运会会徽,名为“潮涌”,象征着新时代中国特色社会主
义大潮的涌动和发展.右图是会徽的几何图形.设弧 AD的长度是 l1,弧 BC的长度是 l2,
几何图形 ABCD面积为 S1,扇形 BOC面积为
S2 ,扇形 AOD周长为定值 L,圆心角为 ,
l1
若 3,则当 S1取得最大值时,圆心角为 l2
的值为
A.1 B.2 C.3 D.4
二、多选题:本题共 4小题,每小题 5分,共 20分.在每小题给出的四个选项中,有多
个选项符合题目要求,全部选对的得 5分,选对但不全的得 2分,有选错的得 0分.
9.下列说法正确的是
A .两个角的终边相同,则它们的大小相等 B. tan 225 1
C.若cos 0,则 为第一或第四象限角 D.经过 30分钟,钟表的分针转过 π弧度
10.已知 sin cos
1
,且 为锐角,则下列选项中正确的是
5
sin cos 12A. B. sin cos
7
25 5
4
C. (0, ) D. tan
4 3
11.已知函数 f (x) 2sin x cos2x,下列选项中正确的是
A. f (x)为奇函数 B. f (x)在区间 0,2π 内有 2个零点
π 3C. f (x)的周期是 D. f (x)的最大值为
2
x 2 x 0
12.已知函数 f x ,方程 f 2 x mf x 1 0lgx x 0 有 4个不同的实数根,
则下列选项正确的为
A.函数 f x 3 的零点的个数为 2 B.实数m的取值范围为 ,
2
C.函数 f x 无最值 D.函数 f x 在 0, 上单调递增
高一数学试题第 2 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}
三、填空题:本题共 4小题,每小题 5分,共 20分.
2
13. log 3 log 36 612 8 的值为______.
π
14.若 sin(π ) 3 ,则 cos( ) _________.
6 3 3
15.已知 a,b,c均为正实数, ab ac 4,则
2 2 8
的最小值是______.
a b c a b c
1
16.已知函数 f (x) (其中 , )的
sin( x ) 0 2
部分图象如图所示,则 ________, ________.
四、解答题:本题共 6小题,共 70分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分 10分)
3已知角 的始边与 x轴的非负半轴重合,终边与单位圆的交点M 的坐标为 ( , y ),
5 0
且 (3 , 2 ) .
2
(1)求 sin 的值;
cos( ) cos( 9 )
(2 2)求 3 的值.sin( ) tan( )
2
18.(本小题满分 12分)
x
已知函数 f x x 2 2 a ,a R .
(1)当 a 1时,解关于 x的方程 f x 0;
(2)解关于 x的不等式 f x 0 .
19.(本小题满分 12分)
已知函数 f x Asin x π( A 0, 0, )的部分图象如图所示.若
2
f x 的图象上所有点的纵坐标不变,把横坐标扩大到原来的
2倍,得到函数 g x 的图象.
(1)求 g x 的解析式;
(2)求 g x 在 1,2 上的单调递减区间.
高一数学试题第 3 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}
20.(本小题满分 12分)
已知二次函数 f x ax 2 4x 1 .
(1)当 a取何值时,不等式 f x 0对一切实数 x都成立;
(2)若 f x 在区间 1,1 内恰有一个零点,求实数 a的取值范围.
21.(本小题满分 12分)
已知函数 f x sin 2x
π
2cos
2 x 1.
6
(1)求 f
π
6
的值;
(2)求 f x 的单调递增区间;
(3)若 f x 在区间 0,m 上有且只有两个零点,求 m的取值范围.
22.(本小题满分 12分)
已知定义域为 I ,0 0, 的函数 f x 满足对任意 x1, x2 I 都有
f x1x2 x1 f x2 x2 f x1 .
(1)求证 f x 是奇函数;
(2)设 g f xx ,且当 x 1时, g x 0,求不等式 g x 2 g x 的解.
x
高一数学试题第 4 页 共 4 页
{#{QQABLQwUggCoABBAAAhCAwV6CAMQkAEACIoOgFAEMAAAiAFABAA=}#}