【志鸿-赢在课堂】2015-2016学年湖北人教A版必修三第二章随机抽样资料 课件+同步训练(4份

文档属性

名称 【志鸿-赢在课堂】2015-2016学年湖北人教A版必修三第二章随机抽样资料 课件+同步训练(4份
格式 zip
文件大小 12.7MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2015-08-05 10:34:43

文档简介

课件29张PPT。第二章 统计
2.1 随机抽样
2.1.1 简单随机抽样和系统抽样1.理解随机抽样的必要性和重要性.
2.会用简单随机抽样方法从总体中抽取样本.
3.了解系统抽样的方法.基础梳理1.简单随机抽样定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
2.抽签法的定义:抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.例如:抽签法的一般步骤是什么?
3.随机数表法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.
随机数表法的步骤是:①将总体的个体编号;②在随机数表中选择开始数字;③读数获取样本号码. 答案:(1)将总体的个体编号;
(2)连续抽签获取样本号码.下面是一段随机数表:
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62注意:开始位置可以自定;读取方向可以上、下、前、后,但一般是向后读取;遇到超过编号数或重复的号码要舍去;编号是三位数时每次取数字也要三个;编号一般从0开始.
例如:抽取编号为00~50中的三个乒乓球检验,决定从上表第二行第6个数开始向后进行,则样本编号是多少?
答案: 24 06 044.系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制订的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.
例如:某学校有1 005个学生,现要选出10个学生代表,决定采用系统抽样的方法进行,如何设计步骤?答案:第一步,用随机数法除去5个学生;第二步,将剩余的1 000个学生编号为1~1 000;第三步,按编号将学生分为10组,每组100人;第四步,随机在第一组选取一个号码如15;第五步,间隔为100在每组中抽取一个号码分别为:15,115,215,315,415,515,615,715,815,915.自测自评1.在统计中,从总体中抽取得到的部分个体叫做总体的一个(  )
A.对象   B.个体   C.样本   D.容量
2.为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是(  )
A.8 B.400
C.96 D.96名学生的成绩C C 3.简单随机抽样当用随机数表时,可以随机地选定读数,从选定读数开始后读数的方向可以是________.
4.简单随机抽样适合于_____________的总体.任意选定的个体较少的题型一 对简单随机抽样的理解例1 判断下列关于简单随机抽样的描述的正误:
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的.
(2)简单随机样本数n小于等于样本总体的个数N.
(3)简单随机样本是从总体中逐个抽取的.
(4)简单随机抽样是一种不放回的抽样.
(5)简单随机抽样的每个个体入样的可能性均为n/N.答案:(1)√ (2)√ (3)√ (4)√ (5)√
点评:判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:
简单随机抽样
如果四个特征有一个不满足就不是简单随机抽样.跟 踪训 练1.实施简单随机抽样的两种常用方法是:______和________.抽签法 随机数表法题型二 实施简单随机抽样的具体方法和步骤例2 某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?解析:简单随机抽样一般采用两种方法:抽签法和随机数表法.
方法一(抽签法) 将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径.方法二(随机数表法) 将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,30,77,40,这10件即为所要抽取的样本.
点评:利用抽签法抽取样本时应注意以下问题.
(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.
(2)号签要求大小、形状完全相同.
(3)号签要搅拌均匀.
(4)要逐一不放回抽取.跟 踪训 练2.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何利用随机数表抽取这个样本?解析:可以按下面的步骤进行:
第一步,先将40件产品编号,可以编为00,01,02,…,38,39.
第二步,在课本(附录1)随机数表中任选一个数作为开始,例如从第8行第5列的数59开始,为便于说明,将课本(附录1)中的第6行至第10行摘录如下:
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数59开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满.于是,所要抽取的样本号码是
16 19 10 12 07 39 38 33 21 34题型三 对系统抽样的理解答案:(1)√ (2)√ (3) √  (4) √
点评:系统抽样适用于个体数较多的总体,判断一种抽样是否为系统抽样.首先看在抽样前是否知道总体是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分.并保证每个个体按事先规定的概率入样.跟 踪训 练A题型四 实施系统抽样的具体方法和步骤例4  某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.(2)确定分段间隔k=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生.
(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5).
(4)那么抽取的学生编号为l+5k(k=0,1,2…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.点评:1.当总体中个体无差异且个体数目较大时,采用系统抽样抽取样本.利用系统抽样抽取样本时,要注意在每一段上仅抽取一个个体,并且抽取出的个体编号按从小到大顺序排列时,从第2个号码起,每个号码与前面一个号码的差都等于同一个常数,这个常数就是分段间隔,因此系统抽样又称为等距抽样.
2.如果总体数不能被样本数整除,先利用随机抽样法去掉多余的个体,再进行分析,如知识梳理:系统抽样的例如.跟 踪训 练4.体育彩票000 001~100 000编号中,凡彩票号码最后三位数为345的中一等奖,采用的是系统抽样吗?为什么?解析:是系统抽样.系统抽样的步骤可概括为总体编号,确定间隔总体分段,在第一段内确定起始个体编号,每段内规则取样等几步.该抽样符合系统抽样的特点.数学·必修3(人教A版)
2.1.1 简单随机抽样和系统抽样
                

1.从2 000个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为(  )
A.99    B.100 C.101 D.200
答案: B 
2.在简单随机抽样中,某一个个体被抽中的可能性是(  )
A.与第几次抽样有关,第1次抽中的可能性要大些
B.与第几次抽样无关,每次抽中的可能性都相等
C.与第几次抽样有关,最后一次抽中的可能性大些
D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样
答案:B
3.(2013·陕西卷)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为(  )
A.11人 B.12人 C.13人 D.14人
解析:根据系统抽样的方法结合不等式求解.
抽样间隔为=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*.
∴24≤k+≤36.
∵∈,∴k=24,25,26,…, 35,
∴k值共有35-24+1=12(个),即所求人数为12.
答案:B
4.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下列编号方法:①01,02,…,100;②001,002,…,100;③00,01,…,99.其中正确的序号是(  )
A.①② B.①③ C.②③ D.仅③
答案:C
5.某厂将在64名员工中用系统抽样的方法抽取4名参加2013年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中另一名员工的编号为________.
答案:40
6.为了考察一段时间内某路口的车流量,测得每小时的平均车流量是576辆,所测时间内的总车流量是11 520辆,那么,这个问题中,样本的容量是________________________________________________________________________.
答案:11 520

7.下列抽样中不是系统抽样的是(  )
A.从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验
C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止
D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
答案:C
8.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是(  )
A.5,10,15,20,25 B.3,13,23,33,43
C.1,2,3,4,5 D.2,4,6,16,32
答案:B
9.一个总体的60个个体编号为00,01,02,…,59,现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第6列开始,向右读取,直到取足样本,则抽取样本的号码是________.
95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39
90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 35
46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 64 70 50 80 67 72 16 42 79
20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30
71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60
答案:18,00,38,58,32,26,25,39
10.为了了解某地区今年高一学生期末考试数学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.
答案:解析:(1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.
(2)分段:由于样本容量与总体容量的比是1∶100,所以将总体平均分为150个部分,其中每一部分包括100个个体.
(3)在第一部分即1号到100号用简单随机抽样,抽取一个号码,比如是56.
(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到容量为150的一个样本.
1.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平;随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.简单随机抽样每个个体入样的可能性都相等,均为n/N.
2.系统抽样的一般步骤:
(1)将总体中的N个对象逐个编号.
(2)将整体按编号进行分段,确定分段间隔k(k∈N,L≤k).
(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k).
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本.