山东省烟台市2023-2024学年高三上学期期末学业水平诊断数学试题(含答案)

文档属性

名称 山东省烟台市2023-2024学年高三上学期期末学业水平诊断数学试题(含答案)
格式 zip
文件大小 928.2KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-02-20 12:31:38

文档简介

烟台市2023~2024学年度第一学期期末学业水平诊断
高三数学
注意事项:
1.本试题满分150分,考试时间为120分钟.
2.答卷前,务必将姓名和准考证号填涂在答题纸上.
3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效:在草稿纸 试题卷上答题无效.
一 选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.
1.设集合,集合,则( )
A. B. C.或 D.或
2.“直线与平行”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
3.已知且,则( )
A. B.
C. D.
4.已知,则向量与夹角的大小为( )
A. B. C. D.
5.我国古代十进制数的算筹记数法是世界数学史上一个伟大的创造.算筹一般为小圆棍算筹计数法的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,以此类推;遇零则置空.纵式和横式对应数字的算筹表示如下表所示,例如:10记为“”,62记为“”.现从由4根算筹表示的两位数中任取一个数,则取到的数字为质数的概率为( )
数字 1 2 3 4 5 6 7 8 9
纵式
演式
A. B. C. D.
6.已知为定义在上的奇函数,当时,,则方程实数根的个数为( )
A.1 B.2 C.3 D.4
7.已知为双曲线的一个焦点,过点作的一条渐近线的垂线,垂足为,直线与的另外一条渐近线交于点.若,则双曲线的离心率为( )
A. B. C. D.3
8.已知函数,若,使得,则的最小值为( )
A. B.-1 C. D.
二 多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.已知样本数据的平均数为,则数据( )
A.与原数据的极差相同 B.与原数据的中位数相同
C.与原数据的方差相同 D.与原数据的平均数相同
10.将函数的图象向右平移个单位长度,得到的图象,则( )
A.的最小正周期为
B.的图象关于直线对称
C.在上单调递增
D.当时,的最小值为
11.如图,在正四棱台中,为棱上一点,则( )
A.不存在点,使得直线平面
B.当点与重合时,直线平面
C.当为中点时,直线与所成角的余弦值为
D.当为中点时,三棱锥与三棱锥的体积之比为
12.我国著名数学家华罗庚先生说:“就数学本身而言,是壮丽多彩 千姿百态 引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美.”图形美是数学美的重要方面.如图,由抛物线分别逆时针旋转可围成“四角花瓣”图案(阴影区域),则( )
A.开口向下的抛物线的方程为
B.若,则
C.设,则时,直线截第一象限花瓣的弦长最大
D.无论为何值,过点且与第二象限花瓣相切的两条直线的夹角为定值
三 填空题:本题共4小题,每小题5分,共20分.
13.的展开式中的系数为__________.
14.已知等差数列的前项和为且,则的值为__________.
15.若存在两个不相等正实数,使得,则实数的取值范围为__________.
16.如图,在直三棱柱中,,,则该三棱柱外接球的表面积为__________;若点为线段的中点,点为线段上一动点,则平面截三棱柱所得截面面积的最大值为__________.(本小题第一空2分,第二空3分)
四 解答题:本题共6小题,共70分.解答应写出文字说明 证明过程或演算步骤.
17.(10分)若的内角的对边分别为.
(1)求;
(2)若,求的面积.
18.(12分)已知数列的前项和,且成等比数列.
(1)求数列的通项公式;
(2)若,求证:数列的前项和.
19.(12分)如图,四棱锥中,底面是边长为2的菱形,,平面底面.
(1)求证:;
(2)若,且四棱锥的体积为2,求直线与平面所成角的正弦值.
20.(12分)某学校计划举办趣味投篮比赛,比赛分若干局进行.每一局比赛规则如下:两人组成一个小组,每人各投篮3次;若某选手投中次数多于未投中次数,则称该选手为“好投手”;若两人均为“好投手”,则称该小组为本局比赛的“神投手组合”.假定每位参赛选手均参加每一局的比赛,每人每次投篮结果互不影响.若甲 乙两位同学组成一个小组参赛,且甲 乙同学的投篮命中率分别为.
(1)求在一局比赛中甲被称为“好投手”的概率;
(2)若以“甲 乙同学组成的小组获得“神投手组合”的局数为3的概率最大”作为决策依据,试推断本次投篮比赛设置的总局数为多少时,对该小组更有利?
21.(12分)已知函数.
(1)讨论函数的单调性;
(2)求证:.
22.(12分)已知为曲线上任意一点,直线与圆相切,且分别与交于两点,为坐标原点.
(1)若为定值,求的值,并说明理由;
(2)若,求面积的取值范围.2023~2024 学年度第一学期期末学业水平诊断
高三数学参考答案
一、选择题
A B D B A C C C
二、选择题
9.AD 10.ACD 11.BCD 12.ABD
三、填空题
13. 200 e 14.1 15.a < 16.54π,3 6
2
四、解答题
(2a b)sin A
17.解:(1)因为 = a tan C ,
cos B
所以 sin AsinC cos B = 2sin2 AcosC sin Asin BcosC , ··························· 2分
所以 sin A(sinC cos B + sin BcosC) = 2sin2 AcosC ,
所以 sin Asin(B +C) = 2sin2 AcosC ,
所以 sin2 A = 2sin2 AcosC , ······························································· 3分
1
因为 sin A ≠ 0,所以 cosC = , ·························································· 4分
2
π
又因为C∈ (0,π ) ,所以C = ; ························································ 5分
3
(2)由余弦定理,7 = b2 + 9 3b , ·························································· 6分
即b2 3b + 2 = 0, 解得b =1或b = 2 ,
当b =1 1时, S = absin C 1 3 1 3 3 3= × × × = , ······························· 8分
2 2 2 4
b = 2 S 1 1 3 3 3当 时, = absin C = ×3×2× = . ································ 10分
2 2 2 2
18.解:(1)因为 S1, S3 2, S7 成等比数列,
所以 (7 +m)2 = (1+m)(49+m) , ························································ 2分
解得m = 0,所以 S 2n = n , ································································ 3分
2 2
当 n ≥ 2 时,an = Sn Sn 1 = n (n 1) = 2n 1, ································ 5分
高三数学答案(第1页,共6页)
{#{QQABTQSAoggIABJAAAhCEwWaCgKQkAECAAoORAAMoAAByAFABAA=}#}
当 n =1时,a1 =1符合上式,
所以an = 2n 1; ············································································· 6分
b 2n 1 2n 1(2) n = 22n
= n , 4
T 1 3 5 2n 1所以 n = +4 42
+ 3 + + n , 4 4
Tn 1 3 2n 3 2n 1= 2 + 3 + + n + , ··················································· 7分 4 4 4 4 4n+1
3Tn 1 2( 1 1 1 ) 2n 1两式相减得 = + 2 + 3 + + n n+1 , ······························ 8分 4 4 4 4 4 4
T 5 2 2n 1 5 6n + 5n = n 1 n = n , ··············································· 11分 9 9×4 3×4 9 9×4
6n + 5
因为当n∈N 时,
9×4n
> 0 ,
5 6n + 5 5
所以Tn = n < . ··································································· 12分 9 9×4 9
19.解:(1)证明:因为底面 ABCD为菱形,所以 AC ⊥ BD , ························ 1分
因为平面VBD ⊥底面 ABCD,且平面VBD 底面 ABCD = BD ,
AC 底面 ABCD,所以 AC ⊥平面VBD, ········································· 3分
又因为VD 平面VBD,所以 AC ⊥VD; ············································ 4分
(2)设 AC BD = O ,点V 到底面 ABCD的距离为 h ,
1
则有 ×2× 3×h = 2,解得h = 3 , ······· 5分
3
在平面VBD内,过点V 作VO′ ⊥ BD ,
因为平面VBD ⊥底面 ABCD,
所以VO′ ⊥底面 ABCD,VO′ = 3 ,
在 Rt VO′B 中,VB = 2 ,VO′ = 3 ,
可得 BO′ =1,所以O′与点O重合, ··················································· 6分

故VO ⊥底面 ABCD,以O为原点,OA,OB,OV 方向分别为 x, y, z 轴的正方向,建
立如图所示的空间直角坐标系O xyz ,

则有 AB = ( 3,1,0), AV = ( 3,0, 3),CV = ( 3,0, 3),·············· 8分
设n = (x, y, z)为平面VAB 的一个法向量,
高三数学答案(第2页,共6页)
{#{QQABTQSAoggIABJAAAhCEwWaCgKQkAECAAoORAAMoAAByAFABAA=}#}
3x + y = 0
则有 ,令 x =1,可得n = (1, 3,1), ···························· 10分
3x + 3z = 0

n CV 2 3 10
所以cos < n,CV >= = = ,
| n | | CV | 6 5 5
故直线VC 与平面VAB 10所成角的正弦值为 . ······································ 12分
5
2
20.解:(1)在一局比赛中,甲投篮命中次数ξ~B(3, ),
3
甲被称为“好投手”需要投中 2 次或者 3 次, ······································· 1分
所以甲在一局比赛中被称为“好投手”的概率
p1=C
2
3 (
2)2 (1)1 +C3 2 3 203 ( ) = . ························································ 4分 3 3 3 27
(2)同理,乙在一局比赛中被称为“好投手”的概率
p 2 1 22 =C3 ( ) (
1)1 +C3 1 3 1
2 2 3
( ) = . ························································· 5分
2 2
因为每人每次投篮结果互不影响,所以在一局比赛中甲、乙同学获得“神投手组合”
20 1 10
的概率 p = p1 p2 = × = . ······················································ 6分 27 2 27
设 n 局比赛中,甲、乙同学获得“神投手组合”的局数为 X ,
X B(n, 10 ) P(X 3) C3 (10~ = = )3则 ,且 n (
17 )n 3, ······························ 7分
27 27 27
f (n) = C3(10 )3(17 )n 3设 n ,则 f (n) ≥ f (n +1)且 f (n) ≥ f (n 1), 27 27
3 10
由Cn ( )
3(17 )n 3 C3 (10 )3(17≥ )n 2
27 27 n+1

27 27
17
化简得 (n 2) ≥ (n +1),解得n ≥ 7.1. ··········································· 9分
27
C3 (10 )3(17 )n 3 ≥ C3 10 3 17 n 4由 n 27 27 n 1
( ) ( ) ,
27 27
17
化简得 n ≥ n 3,解得n ≤ 8.1. ····················································· 11分
27
*
又 n∈N ,所以n 的值为8,即总局数为8时,对该小组更有利. ·············· 12分
高三数学答案(第3页,共6页)
{#{QQABTQSAoggIABJAAAhCEwWaCgKQkAECAAoORAAMoAAByAFABAA=}#}
f ′(x) 1 (2ax +1)(x +1) (ax
2 + x) ax2 + (1 2a)x
21.解:(1) = = . ······· 1分
x +1 (x +1)2 (x +1)2
当 a = 0时,f ′(x) x= ,当 x∈ ( 1,0),f ′(x) < 0,f (x) 单增;当 x∈ (0,+∞),
(x +1)2
f ′(x) > 0, f (x) 单增,故 f (x) 在 ( 1,0) 上单减,在 (0,+∞)上单增. ········ 2分
当 a ≠ 0时,令 g(x) = ax2 + (1 2a)x = ax(x 1 2a ) . ····················· 3分
a
1 2a 1 a
注意到,当0 < a <1时, ( 1) = > 0,
a a
0 < a 1< 1 2a当 时, > 0, f (x) 在 ( 1,0) 上递减,在 (0,1 2a ) 上递增,
2 a a
1 2a
在 ( ,+∞) 上递减; ······························································· 4分
a
1
当 < a <1 1 2a 1 2a时, 1< < 0, f (x) 在 ( 1, ) 上递减,
2 a a
在 (1 2a ,0)上递增,在 (0,+∞)上递减; ········································ 5分
a
当 a 1= 时 g(x) 1= x2 ≤ 0,所以 f (x) 在 ( 1,+∞)上单调递减; ········· 6分
2 2
a 0 1 2a ( 1) 1 a当 < 时, = < 0,
a a
f (x) 在 ( 1,0) 上单调递减,在 (0,+∞)上单调递增.
1
综上,当a ≤ 0 时, f (x) 在 ( 1,0) 上单减,(0,+∞)上单增;当0 < a < 时, f (x)
2
在 ( 1,0) 1 2a 1 2a 1上单减, (0, ) 上单增, ( ,+∞) 上单减;当 a = 时, f (x) 在
a a 2
( 1, 1 1 2a 1 2a +∞)上单减;当 < a <1时, f (x) 在 ( 1, ) 上单减, ( ,0) 上单增,
2 a a
(0,+∞)上单减. ················································································ 7分
高三数学答案(第4页,共6页)
{#{QQABTQSAoggIABJAAAhCEwWaCgKQkAECAAoORAAMoAAByAFABAA=}#}
(2)由(1)可知当a = 0时 f (x) 在[0,+∞) 上单增,所以 f (x) ≥ f (0) = 0,
x
即 ln(x +1) ≥ (当且仅当 x = 0 时等式成立), ·································· 8分
x +1
1
令 x = 可以得到, ln(n +1) 1> , ················································· 9分
n n n +1
1 n +1
所以 < ln( ) = ln(n +1) ln n ,
n +1 n
1
< ln(n + 2) ln(n +1),
n + 2

1
< ln(n + n) ln(2n 1) , ··························································· 11分
n + n
1 1 1
累加可得 + + + < ln 2n ln n = ln 2 .······························· 12分
n +1 n + 2 2n
22.解:(1)由题意,设 P(x1, y1) ,M (x2 , y2 ) ,
当直线 PM 斜率不为0 时,直线 PM : x = my + t
因为直线与圆 x2 + y2 | t |=1 =1 t 2 =1+m2相切,所以 ,即 ·················· 2分
1+m2
x2 y2
+ =1
联立 4 n 得, (m2n + 4)y2 + 2mnty + nt 2 4n = 0 ,
x = my + t
y y 2mnt , y y nt
2 4n
所以 1 + 2 = 2 = , ················································ 3分 m n + 4 1 2 m2n + 4
4t 2 4m2x1x = (my + t)(my + t) = m
2
2 1 2 y1 y
n
2 +mt(y1 + y
2
2 ) + t = , m2n + 4

OP OM x 4m
2n + (4+ n)t 2 4n
= 2 2所以 1x2 + y1 y2 = m2
,因为 t =1+m
n + 4
(4 3n)m2 + 4 3n
所以 x1x2 + y1 y2 = 2 , ·················································· 5分 m n + 4
4 3n 4 3n 4
所以只需 = ,所以n = 4或n = ; ········································ 6分
n 4 3
4
当直线 PM 斜率为0 时, x1x2 + y1 y2 = 3+ 也符合上式. n
综上,n = 4 4或n = . ·········································································· 7分
3
高三数学答案(第5页,共6页)
{#{QQABTQSAoggIABJAAAhCEwWaCgKQkAECAAoORAAMoAAByAFABAA=}#}
4
(2)当n = 时,由(1)知,OP OM = 0 ,即OP ⊥ OM ,同理OP ⊥ ON .
3
即M ,O, N 三点共线,所以 S PMN = 2S PMO =| PM | r =| PM | . ··················· 8分
2mt t 2 4
当直线 PM 斜率不为0 时,由(1)可知 y1 + y2 = m2
, y1 y2 = 2 . + 3 m + 3
2
S | PM | 1 m2 (y y )2 4y y 1 m2 2 4m 3t
2 +12
故 PMN = = + 1 + 2 1 2 = + 2 , · 9分 m +3
2 2 2
t 2 2 m + 9
2 (m + 3 2)(m + 3+ 6)
因为 =1+m2 , S PMN = 1+m
2
2 = 2 , m +3 m +3
m2令 + 3 = k ≥ 3,
2 (k 2)(k + 6) 2
S 2 k + 4k 12 12 4所以 PMN = = k k 2
= 2 + +1 , ············ 10分
k 2 k
k 3 4 3所以,当 = 时, S 的最小值为2 ,当 k = 6时, S 的最大值为 ,
PMN PMN 3
当直线 PM 斜率为0 时, S PMN = 2 [2,
4 3
∈ ],
3
综上, S 4 3PMN 的取值范围为[2, ]. ······················································· 12分 3
高三数学答案(第6页,共6页)
{#{QQABTQSAoggIABJAAAhCEwWaCgKQkAECAAoORAAMoAAByAFABAA=}#}
同课章节目录