中小学教育资源及组卷应用平台
第十章 概率
10.3 频率与概率
10.3.1 频率的稳定性
教学设计
一、教学目标
1.理解频率的稳定性.
2.理解频率与概率的关系,掌握用频率估计概率.
二、教学重难点
1、教学重点
用频率估计概率.
2、教学难点
频率与概率的关系.
三、教学过程
1、新课导入
我们知道,事件的概率越大,意味着事件发生的可能性越大,在重复试验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复试验中,相应的频率一般也越小. 在初中,我们利用频率与概率的这种关系,通过大量重复试验,用频率去估计概率. 那么,在重复试验中,频率的大小是否就决定了概率的大小呢?频率与概率之间到底是一种怎样的关系呢?
2、探索新知
由重复做同时抛掷两枚质地均匀的硬币的试验结果,我们发现:
(1)试验次数n相同,频率可能不同,这说明随机事件发生的频率具有随机性.
(2)从整体来看,频率在概率0.5附近波动.当试验次数较少时,波动幅度较大;当试验次数较大时,波动幅度较小.但试验次数多的波动幅度并不全都比次数少的小,只是波动幅度小的可能性更大.
大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.
1.频率的稳定性
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率会逐渐稳定于事件A发生的概率. 频率的这个性质为频率的稳定性.因此,可以用频率估计概率.
2.频率与概率的区别和联系
(1)区别:频率是一个变量,随着试验次数的变化而变化,概率是一个定值,是某事件的固有属性.
(2)联系:频率是概率的试验值,会随试验次数的增加逐渐稳定;概率是频率理论上的稳定值,在实际中可用频率估计概率.
例1 新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年、2015年出生的婴儿性别比分别为115.88和113.51.
(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);
(2)根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?
例2 一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
3、课堂练习
1.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为( )
A.0.45,0.45 B.0.5,0.5 C.0.5,0.45 D.0.45,0.5
2.随着互联网的普及,网上购物已逐渐成为消费时尚.为了解消费者对网上购物的满意情况,某研究机构随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:
满意情况 不满意 比较满意 满意 非常满意
人数 200 n 2100 1000
根据表中数据,估计在网上购物的消费者小马对网上购物“比较满意”或“满意”的概率为( )
A. B. C. D.
3.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的数据,时间是从某年的5月1日到下一年的4月30日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似是_________________.
4、小结作业
小结:本节课学习了频率的稳定性,掌握了用频率估计概率.
作业:完成本节课课后习题.
四、板书设计
10.3.1 频率的稳定性
1.频率的稳定性:一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率会逐渐稳定于事件A发生的概率. 频率的这个性质为频率的稳定性.
一、教学目标
1.理解频率的稳定性.
2.理解频率与概率的关系,掌握用频率估计概率.
二、教学重难点
1、教学重点
用频率估计概率.
2、教学难点
频率与概率的关系.
三、教学过程
1、新课导入
我们知道,事件的概率越大,意味着事件发生的可能性越大,在重复试验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复试验中,相应的频率一般也越小. 在初中,我们利用频率与概率的这种关系,通过大量重复试验,用频率去估计概率. 那么,在重复试验中,频率的大小是否就决定了概率的大小呢?频率与概率之间到底是一种怎样的关系呢?
2、探索新知
由重复做同时抛掷两枚质地均匀的硬币的试验结果,我们发现:
(1)试验次数n相同,频率可能不同,这说明随机事件发生的频率具有随机性.
(2)从整体来看,频率在概率0.5附近波动.当试验次数较少时,波动幅度较大;当试验次数较大时,波动幅度较小.但试验次数多的波动幅度并不全都比次数少的小,只是波动幅度小的可能性更大.
大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.
1.频率的稳定性
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率会逐渐稳定于事件A发生的概率. 频率的这个性质为频率的稳定性.因此,可以用频率估计概率.
2.频率与概率的区别和联系
(1)区别:频率是一个变量,随着试验次数的变化而变化,概率是一个定值,是某事件的固有属性.
(2)联系:频率是概率的试验值,会随试验次数的增加逐渐稳定;概率是频率理论上的稳定值,在实际中可用频率估计概率.
例1 新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年、2015年出生的婴儿性别比分别为115.88和113.51.
(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);
(2)根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?
解:(1)2014年男婴出生的频率为,
2015年男婴出生的频率为.
由此估计,我国2014年男婴出生率约为0.537,2015年男婴出生率约为0.532.
(2)由于调查新生儿人数的样本非常大,根据频率的稳定性,上述对男婴出生率的估计具有较高的可信度.因此,我们有理由怀疑“生男孩和生女孩是等可能的”的结论.
例2 一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
解:当游戏玩了10次时,甲、乙获胜的频率都为0.5;当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7.根据频率的稳定性,随着试验次数的增加,频率偏离概率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近.而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的.因此,应该支持甲对游戏公平性的判断.
气象工作者有时用概率预报天气,如某气象台预报“明天的降水概率是90%.如果您明天要出门,最好携带雨具”.如果第二天没有下雨,我们或许会抱怨气象台预报得不准确.那么如何理解“降水概率是90%”?又该如何评价预报的结果是否准确呢?
降水的概率是气象专家根据气象条件和经验,经分析推断得到的.对“降水的概率为90%”比较合理的解释是:大量观察发现,在类似的气象条件下,大约有90%的天数要下雨.
只有根据气象预报的长期记录,才能评价预报的准确性.如果在类似气象条件下预报要下雨的那些天(天数较多)里,大约有90%确实下雨了,那么应该认为预报是准确的;如果真实下雨的天数所占的比例与90%差别较大,那么就可以认为预报不太准确.
3、课堂练习
1.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为( )
A.0.45,0.45 B.0.5,0.5 C.0.5,0.45 D.0.45,0.5
答案:D
解析:出现正面朝上的频率是,出现正面朝上的概率是0.5.故选D.
2.随着互联网的普及,网上购物已逐渐成为消费时尚.为了解消费者对网上购物的满意情况,某研究机构随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:
满意情况 不满意 比较满意 满意 非常满意
人数 200 n 2100 1000
根据表中数据,估计在网上购物的消费者小马对网上购物“比较满意”或“满意”的概率为( )
A. B. C. D.
答案:C
解析:由题意得,,因为随机调查的消费者中对网上购物“比较满意”或“满意”的人数为,所以随机调查的消费者中对网上购物“比较满意”或“满意”的频率为.由此估计在网上购物的消费者小马对网上购物“比较满意”或“满意”的概率为.故选C.
3.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的数据,时间是从某年的5月1日到下一年的4月30日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似是_________________.
答案:0.03
解析:在一年内挡风玻璃破碎的频率为,用频率来估计挡风玻璃破碎的概率近似是0.03.
4、小结作业
小结:本节课学习了频率的稳定性,掌握了用频率估计概率.
作业:完成本节课课后习题.
四、板书设计
10.3.1 频率的稳定性
1.频率的稳定性:一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率会逐渐稳定于事件A发生的概率. 频率的这个性质为频率的稳定性.因此,可以用频率估计概率.
2.频率与概率的区别和联系
(1)区别:频率是一个变量,随着试验次数的变化而变化,概率是一个定值,是某事件的固有属性.
(2)联系:频率是概率的试验值,会随试验次数的增加逐渐稳定;概率是频率理论上的稳定值,在实际中可用频率估计概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)