20.2 数据的波动程度(第2课时)教学课件--人教版初中数学八下

文档属性

名称 20.2 数据的波动程度(第2课时)教学课件--人教版初中数学八下
格式 pptx
文件大小 2.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-02-21 19:36:40

图片预览

文档简介

(共22张PPT)
第二十章 数据的分析
第二十章 数据的分析
20.2 数据的波动程度
第2课时
学 习 目 标
1
2
能熟练计算一组数据的方差;(重点)
能用样本的方差估计总体的方差及根据方差做决策。(难点)
1.写出方差的计算公式:
3.方差的适用条件:
当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况.
2.意义:方差越大,数据的波动越大;
方差越小,数据的波动越小.
旧知回顾
例1 现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近,快餐公司决定通过检查鸡腿的重量来确定选购哪家公司的鸡腿,检查人员从两家的鸡腿中各抽取15个鸡腿,记录它们的质量如下(单位:g):
知识讲解
用样本方差估计总体方差
1
甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73
乙 75 73 79 72 76 71 73 72 78 74 77 78 80 71 75
根据上面的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?
解:甲、乙两家抽取的样本数据的平均数分别是
样本平均数相同,估计这批鸡腿的平均质量相近.
甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73
乙 75 73 79 72 76 71 73 72 78 74 77 78 80 71 75
样本数据的方差分别是
由    可知,两家加工厂的鸡腿质量大致相等;由 可知,甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选购甲加工厂生产的鸡腿.
用样本方差来估计总体方差是统计的基本思想,就像用样本的平均数估计总体的平均数一样,考察总体方差时如果所要考察的总体包含很多个体,或者考察本身带有破坏性,实际中常常用样本方差来估计总体方差.
例2 某跳远队准备从甲、乙两名运动员中选取成绩稳定的一名参加比赛.下表是这两名运动员10次测验成绩(单位:m):
甲 5.85 5.93 6.07 5.91 5.99
6.13 5.98 6.05 6.00 6.19
乙 6.11 6.08 5.83 5.92 5.84
5.81 6.18 6.17 5.85 6.21
你认为应该选择哪名运动员参赛?为什么?
解:甲、乙测验成绩的平均数分别是
方差分别是
s2甲< s2乙,因此,应该选甲参加比赛.
即学即练
1. 甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7,8,6,8,6,5,9,10,7,4
乙:9,5,7,8,7,6,8,6,7,7
经过计算,两人命中环数的平均数相同,但s2甲 s2乙,所以确定 去参加比赛.
>

2.从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)
甲:9,10,11,12,7,13,10,8,12,8
乙:8,13,12,11,10,12,7,7,9,11
问:(1)哪种农作物的苗长得比较高?
(2)哪种农作物的苗长得比较整齐?
解:(1) , ∴两种农作物的苗长得一样高;
(2) s2甲=3.6,s2乙=4.2,∵s2甲∴甲种农作物的苗长得比较整齐。
例3 某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛.在最近10次选拔赛中,他们的成绩(单位: cm)如下:
甲:585 596 610 598 612 597 604 600 613 601
乙:613 618 580 574 618 593 585 590 598 624
(1)这两名运动员的运动成绩各有何特点?
分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大.
利用样本方差做决策
2
解:   
(585+596+610+598+612+597+604+600+613+601)
=601.6,s2甲≈59.85;
(613+618+580+574+618+593+585+590+598+624)
=599.3,s2乙≈258.37.
由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定.但甲队员的成绩不突出,乙队员和甲队员相比比较突出.
(2)历届比赛表明,成绩达到5.96 m就很可能夺冠,
你认为为了夺冠应选谁参加这项比赛?如果历
届比赛成绩表明,成绩达到6.10 m就能打破纪录,
那么你认为为了打破纪录应选谁参加这项比赛.
解:从平均数分析可知,甲、乙两队员都有夺冠的可能.但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大.
但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性更大,我认为为了打破纪录,应选乙队员参加这项比赛.
甲、乙两班各有8名学生参加数学竞赛,成绩如下表:
甲 65 74 70 80 65 66 69 71
乙 60 75 78 61 80 62 65 79
请比较两班学生成绩的优劣.
练一练
1.甲、乙两台机床同时生产一种零件.在10天中,两台机床每天出次品的数量如下表.
甲 0 1 0 2 2 0 3 1 2 4
乙 2 3 1 1 0 2 1 1 0 1
(1)分别计算两组数据的平均数和方差;
(2)从计算结果看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?
随堂训练
2.甲、乙两台包装机同时包装糖果.从中各抽出10袋,测得它们的实际质量(单位:g)如下表.
甲 501 506 508 508 497 508 506 508 507 499
乙 505 507 505 498 505 506 505 505 506 506
(1)分别计算两组数据的平均数和方差;
(2)哪台包装机包装的10袋糖果的质量比较稳定?
3.为了考察甲、乙两种小麦的长势,分别从中随机抽取10株麦苗,测得苗高(单位:cm)如下表.
甲 12 13 14 15 10 16 13 11 15 11
乙 11 16 17 14 13 19 6 8 10 16
(1)分别计算两种小麦的平均苗高;
(2)哪种小麦的长势比较整齐?
4.为了从甲、乙两名学生中选择一人去参加电脑知识竞赛,在相同条件下对他们的电脑知识进行10次测验,成绩(单位:分)如下:
甲的成绩 76 84 90 84 81 87 88 81 85 84
乙的成绩 82 86 87 90 79 81 93 90 74 78
(1)填写下表:
同学 平均成绩 中位数 众数 方差 85分以上的频率
甲 84 84 0.3
乙 84 84 34
84
90
0.5
14.4
(2)利用以上信息,请从不同的角度对甲、乙两名同学的成绩进行评价。
(2)利用以上信息,请从不同的角度对甲、乙两名同学的成绩进行评价
从众数看,甲成绩的众数为84分,乙成绩的众数是90分,乙的成绩比甲好;
从方差看,s甲2 = 14.4, s乙2 = 34,
甲的成绩比乙相对稳定;
从甲、乙的中位数、平均数看,中位数、平均数都是84分,两人成绩一样好;
从频率看,甲85分以上的次数比乙少,乙的成绩比甲好。
根据方差做决策方差
方差的作用:比较数据的稳定性
利用样本方差估计总体方差
课堂小结