鲁教版七年级数学下册第10章10.4线段的垂直平分线测试题(含答案)
一.选择题(共8小题)
1.(2015 广西)如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=( )
A.80° B. 60° C. 50° D. 40°
(1题图) (2题图) (3题图)
2.(2015 遂宁)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为( )
A.1cm B. 2cm C. 3cm D. 4cm
3.(2015 越秀区一模)如图,AB=AC,∠A=40°,AB的垂直平分线DE交AC于点E,垂足为D,则∠EBC的度数是( )
A.30° B. 40° C. 70° D. 80°
4.(2014 丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为( )
A.70° B. 80° C. 40° D. 30°
(4题图) (5题图) (6题图) (7题图)
5.(2015 随州)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )
A.8 B. 9 C. 10 D. 11
6.(2015 丹东模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是( )
A.5 B. 10 C. 12 D. 13
7.(2015 哈尔滨模拟)如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则三角形BEC的周长为( )
A.11 B. 12 C. 13 D. 14
8.(2015 涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是( )
A.13 B. 10 C. 12 D. 5
二.填空题(共5小题)
9.(2015 徐州)如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= °.
(8题图) (9题图) (10题图) (11题图)
10.(2015 乐山)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= °.
11.(2015 毕节市)等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为 .
12.(2015 荆州)如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= cm.
(12题图) (13题图) (14题图)
13.(2015 东莞校级一模)如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.
三.解答题(共4小题)
14.(2014秋 沙河市校级期末)在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.
15.(2014秋 阿坝州期末)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.
16.(2014秋 剑川县期末)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.
(1)求∠BDC的度数;
(2)求BD的长.
17.(2014秋 嘉荫县期末)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.
鲁教版七年级数学下册第10章10.4线段的垂直平分线测试题参考答案
一.选择题(共8小题)
1.D.2.C.3.A.4.D.5.C.6.D.7.C.8.A.
二.填空题(共5小题)
9. 87 °.10. 15 °11. 36° .12. 16 13. 6
三.解答题(共4小题)
14.证明:AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
∴BM=AM,CN=AN,
∴∠MAB=∠B,∠CAN=∠C,
∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,
∴△AMN是等边三角形,
∴AM=AN=MN,
∴BM=MN=NC.
15.解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,
∴DE=CE,OE=OE,
∴Rt△ODE≌Rt△OCE,∴OD=OC,
∴△DOC是等腰三角形,
∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线;
(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,
∵EC⊥OB,ED⊥OA,
∴OE=2DE,∠ODF=∠OED=60°,
∴∠EDF=30°,
∴DE=2EF,
∴OE=4EF.
16.解:(1)∵DE垂直平分AB,∴DA=DB,∴∠DBE=∠A=30°,∴∠BDC=60°;
(2)在Rt△BDC中,∵∠BDC=60°,
∴∠DBC=30°,
∴BD=2CD=4.
17.证明:连接AF,
∵EF为AB的垂直平分线,
∴AF=BF,
又AB=AC,∠BAC=120°,
∴∠B=∠C=∠BAF=30°,
∴∠FAC=90°,
∴AF=FC,
∴FC=2BF.