勾股定理逆定理第三课时

文档属性

名称 勾股定理逆定理第三课时
格式 rar
文件大小 10.7KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2009-04-06 22:16:00

图片预览

文档简介

18.2 勾股定理的逆定理(三)
教学目标 知识与技能 1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2.灵活应用勾股定理及逆定理解综合题。3.进一步加深性质定理与判定定理之间关系的认识。
过程与方法 在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。使学生能归纳总结数学思想方法在题目中应用的规律。
情感态度与价值观 培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值
重点 灵活应用勾股定理及逆定理解综合题目
难点 灵活应用勾股定理及逆定理解解综合题目
教 学 过 程
教学设计 与 师生互动 备 注
第一步:课堂引入勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。
第二步:应用举例:例1已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。分析:利用因式分解和勾股定理的逆定理判断三角形的形状。⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。
例2已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。分析:使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。⑴作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC中,3、4、5勾股数,△DEC为直角三角形,DE⊥BC;⑷利用梯形面积公式可解,或利用三角形的面积。例3已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD。求证:△ABC是直角三角形。 分析:勾股定理及逆定理的综合应用,注意条件的转化及变形。∵AC2=AD2+CD2,BC2=CD2+BD2∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2
第三步:课堂练习1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )A.等腰三角形;B.直角三角形;C.等腰三角形或直角三角形;D.等腰直角三角形。2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。求:四边形ABCD的面积。4.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD。求证:△ABC中是直角三角形。参考答案:1.C; 2.△ABC是等腰直角三角形; 3. 4.提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°。
第四步:课后练习:1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。求证:△ABC是等腰三角形。3.已知:如图,∠DAC=∠EAC,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。求证:AB2=AE2+CE2。4.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。 参考答案:1.6; 2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。 3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。4.提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。又因为c2=14,所以a2+b2=c2 。
小结与反思: