课件30张PPT。未来是你们的! 勾股定理证
明应
用小
结猜
想练
习史
话 两千多年前,古希腊有个哥拉 斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾 股 世 界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前 两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。 我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。这就是本届大会会徽的图案.活动 你见过这个图案吗?你听说过勾股定理吗? 这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”. 读一读
我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.
图1-1图1-2 18.1 勾股定理(1)学习目标:1.体验勾股定理的探索过程,学习
古今中外数学家的探索精神。2.会运用勾股定理解决简单问题。看一看 相传两千五百年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反映直角三角形三边的某种数量关系,同学们,我们也来观察下面的图案,看看你能发现什么? 数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?直角三角形三边有什么关系?SA+SB=SC两直边的平方和等于斜边的平方你想到了什么? C的面积(单位面积)1325(1)观察图1、图2,并填写下表: A的面积(单位面积) B的面积(单位面积) 图1 图216949做一做分“割”成若干个直角边为整数的三角形(单位面积)活动 (单位面积)把C“补” 成边长为6的正方形面积的一半活动 SA+SB=SC448两直角边的平方和
等于斜边的平方做一做分割成若干个直角边为整数的三角形(面积单位)一般的直角三角形三边为边关系活 动(1)你能用三角形的边长表示正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?与同伴进行交流。议一议 4232522232acbSa+Sb=Sc设:直角三角形的三边长分别是a、b、c猜想:两直角边a、b与斜边c 之间的关系?a2+b2=c2┏a2+b2=c2acb 直角三角形两直角边的平方和等于斜边的平方.勾股弦 命题:活动 看左边的图案,这个图案是公元 3 世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(红色)可以如图围成一个大正方形,中间的部分是一个小正方形 (黄色).
赵爽弦图的证法化简得: c2 =a2+ b2.4.毕达哥拉斯证法:abcaabbcS大正方形=4× ab+a2+b2
=2ab+a2+b2
S大正方形=4× ab+c2
=2ab+c2
∵S大正方形=S大正方形
∴2ab+a2+b2=2ab+c2
∴a2+b2=c2
活动┏a2+b2=c2acb 直角三角形两直角边的平方和等于斜边的平方.勾股弦 勾股定理(毕达哥拉斯定理) ?(a + b)(b + a) = ?c2 + 2(?ab)
?a2 + ab + ?b2 = ?c2 + ab
? a2 + b2 = c2aabbcc伽菲尔德经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统后,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就称这一证法称为“总统”证法。
∟∟∟活动做一做: P62540026xP的面积 =______________X=____________225BACAB=__________AC=__________BC=__________2515202.求下列图中表示边的未知数x、y、z的值.y②③做一做比一比看看谁算得快!3.求下列直角三角形中未知边的长:可用勾股定理建立方程.方法小结:8x171620x125x做一做拓广应用2.
一个3m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.5m.如果梯子顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?
分析:在Rt△ABC中,
在Rt△DCE中,
所以梯子的顶端沿墙下滑0.5m,梯子底端将外移0.58m.1、本节课我们经历了怎样的过程? 经历了从实际问题引入数学问题然后发现定理,再到探
索定理,最后学会验证定理及应用定理解决实际问题的过程。 2、本节课我们学到了什么? 通过本节课的学习我们不但知道了著名的勾股定理,还
知道从特殊到一般的探索方法及借助于图形的面积来探索、
验证数学结论的数形结合思想。3、学了本节课后我们有什么感想? 很多的数学结论存在于平常的生活中,需要我们用数学
的眼光去观察、思考、发现,这节课我们还受到了数学文化
辉煌历史的教育。
作业
教材第77页习题18.1第1、2、3题
再 见!