2024年春学期期初质量评价
九年级数学试题
(考试时间:120分钟总分:150分)
请注意:1.本试卷分选择题和非选择题两个部分.
2。所有试题的答案均填写在答题卡上,答策写在试卷上无放.
3、作图必须用2B铅笔,并请加,黑加粗.
第一部分选择题(共18分)
一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个进项中,
恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.若号=各则6(▲)
3
A.6
B.
C.1
D.
2
2-3
2.下列说法正确的是(▲)
A.甲、乙两人10次测试成绩的方差分别是S甲2=4,Sz2=14,则乙的成绩更稳定
日.芙奖券的中奖率为1d。买100张奖券,一定会中奖1次
C.x=3是不等式2(x一1)>3的解,这是一个必然事件
D.要了解神舟飞船零件质量情祝,适合采用抽样调查
3.如图,在⊙O中,弦AB,CD相交于点P.若∠A=48°,∠APD=80°,则∠B的度数
为(▲)
A.32°
B.42°
C.48
D.52
D
A
第3题图
第6题图
4.某校组织青年教师教学竞赛活动,.包含教学设计和现场教学展示两个方面.其中教学设
计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最
后得分为(▲)
A.95分
B.94分
C.92.5分
D.91分
5.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x十1)2上的
是(▲)
A.(m,n十1)
B.(m+1,n)
C.(m,n一1)D.(m一1,n)
6.如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB
与CD相交于点P,则cos∠APC的值为(▲)
4.
8.2s
5
5
C.
D,图
5
九年级数学试卷共6页第1页
第二部分
非选择题部分(共132分)
二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应
位置上.)
7.sin30°=▲
8.某青年排球队有12名队员,年龄的情况如下表:
年龄/岁
18
19
20
21
22
人数
3
5
2
1
1
则这12名队员年龄的中位数是▲岁
9.设x1,2是一元二次方程x2十x一4=0的两个根,则1十2的值是▲
10.己知抛物线y=x2一6x+m与x轴有且只有一个公共点,则m=▲
11.用半径为24cm,面积为120cm2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底
面圆的半径为▲_cm.
12.如图,某校数学兴趣小组在A处用仪器测得一宜传气球顶部E处的仰角为21.8°,仪
器与气球的水平距离BC为20米,且距地面高度AB为1.5米,则气球顶部离地面的高度
EC是▲米(结果精确到0.1米,sn21.8°≈0.3714,c0s21.8°≈0.9285,tan21.8°≈
0.4000).
13.夹文件的一种燕尾夹如图1所示,图2是在闭合状态下的示意图,经测量知AE=AF=
25mm,EB=FD=35mm,EF=20mm,则在闭合状态下,点B,D之间的距离是▲mm.
B
E
218°
D
图1
图2
第12题图
第13题图
14.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用
率y与加工时间x(单位:min)满足函数表达式y=一0.2x2+1.5x一2,则最佳加工时间
为▲min.
15.如图,在平面直角坐标系中,△ABC与△AB'C的相似比为1:2,点A是位似中心,已
知点A(2,0),点C(a,b),∠C=90°·则点C的坐标为▲·(结果用含a,b的
式子表示)
16.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.点D为AB的中点,点E为边AC
上一动点,连接ED,将线段ED绕点D顺时针旋转90°得到线段ED,线段ED交
BC于点F,若AE=BF,则EF的值为▲
y
B'
B
D
B
第15题国
第16题图
九年级数学试卷共6页第2页2024年春学期初中学生开学评价
九年级数学试题
参考答案与试题解析
一.选择题(共 6 小题)
1.A. 2.C. 3.A. 4.B. 5.D. 6.B.
二.填空题(共 9 小题)
1
7. . 8.19. 9.﹣1. 10.9. 11.5.
2
12.9.5. 13 48 25 2. . 14.3.75. 15.(6﹣2a,﹣2b). 16.
7
三.解答题(共 11 小题)
17.(1)解:2cos30°﹣tan60°+sin45°cos45°
=2× 32 3 +
2 × 22 2 ········································ 3分
= 3 3 + 12 ···················································5分
= 12.································································6分
(2)解:由题意,∵y=x2+2x﹣5=(x+1)2﹣6,
当 x= 1时,y有最小值=﹣6;··········································· 4分
∵对于一切实数 x,若函数 y>t值 总成立,
∴t<﹣6.········································································ 6分
18.解:(1)画树状图如下:
·························································· 2分
一共有 12种等可能的结果,其中乙选中球拍 C有 3种可能的结果,
3 1
∴P(乙选中球拍 C)= 12 = 4;································································ 4分
(2)公平.理由如下:············································································ 5分
画树状图如下:
一共有 4种等可能的结果,其中两枚硬币全部正面向上或全部反面向上有 2种可能的结
果,··································································································· 6分
P = 2 1∴ (甲先发球) 4 = 2,
P(乙先发球)= 4 24 =
1
2,
∵P(甲先发球)=P(乙先发球),························································· 7分
∴这个约定公平.·················································································8分
19.解:(1)根据题意可知,人口自然增长率=出生率﹣死亡率.·················2分
(2)5‰a=11450,解得 a=2290000.·····················································5分
(3)①近 5年来,我市及全国人口自然增长率逐年下降;自 2021年起,我市人口呈现
负增长(答案不唯一,合理即可);·························································· 7分
②建议国家加大政策优惠力度和补贴力度,降低生育成本,鼓励人们多生育(答案不唯
第 1页(共 6页)
{#{QQABKYCAogAAAgBAAAgCQwG6CAGQkBEACCoOhEAMoAABSRNABAA=}#}
一,合理即可).·················································································· 8分
20.(1)证明:∵AB=AC,
∴∠B=∠C.
∵∠APM=∠B,
∴∠BAP=180°﹣∠B﹣∠APB=180°﹣∠APM﹣∠APB=∠CPM,
∴△ABP∽△PCM.·············································································· 4分
(2)解:∵AB=AC=5,BC=8,BP=2,
∴CP=6.
∵△ABP∽△PCM,
∴ = ,
5 2
∴ = ,
6
∴CM= 125 .························································································ 8分
21.解:(1)如图 1中,点 D即为所求;
········································································4 分
图 1
(2)如图 2中,点 E即为所求,
······································································8 分
图 2
AE =0.4;·····················································································10分
EC
22.(1)证明 如图,连结 OD,
∵半圆 O与 AB相切于点 D,
∴OD⊥AB,
∵∠ACB=90°,
∴∠ODB=∠OCB=90°,
在 Rt△ODB和 Rt△OCB中,
= ,
∴Rt△ODB≌Rt△OCB(HL),
= ,
第 2页(共 6页)
{#{QQABKYCAogAAAgBAAAgCQwG6CAGQkBEACCoOhEAMoAABSRNABAA=}#}
∴BD=BC;························································································ 5分
(2)解 如图,∵∠A=30°,∠ACB=90°,
∴∠ABC=60°,
∵Rt△ODB≌Rt△OCB,
∴∠ = ∠ = 12∠ = 30°,
在 Rt△OBC中,
∵OC=1,
∴ = 30° = 3,
在 Rt△ABC中,
= 30° = 2 3.·············································································10分
23.(1)解:过点 B作 BH⊥DC于点 H,过点 B作 BF⊥OC于点 F,如图,
依题意得:OC⊥DC,∠BDH=37°,∠BEH=45°,
又 BH⊥DC
∴△BEH和△OEC均为等腰直角三角形,
∴EH=BH,EC=OC,
∵DE=1.5m,EC=5m,
∴OC=EC=5m.··················································································· 4分
(2)∵BH⊥DC,BF⊥OC,OC⊥DC,
∴四边形 BHCF为矩形,
∴BF=CH,BH=CF,BF∥CH,
∴∠OBF=∠NEH=45°,
∴△OBF为等腰直角三角形,
∴BF=OF=CH,
设 BF=x m,则 OF=CH=x m,
∴EH=BH=EC﹣CH=(5﹣x) m,
∴DH=DE+EH=1.5+5﹣x=(6.5﹣x) m,
在 Rt△BDH 中,tan∠BDH= ,
即:tan37 = 5 ° 6.5 ,
3 5
∴ = ,
4 6.5
解得:x=0.5,
检验后知道 x=0.5是原方程得根.
∴BF=OF=0.5(m),···········································································8分
在等腰 Rt△OBF中,由勾股定理得:OB= 2 + 2 ≈0.5× 2 ≈0.5×1.41=0.705(m),
∵点 O为 AB的中点,
∴AB=2OB≈2×0.705≈1.4(m),
答:太阳能电池板宽 AB的长度约为 1.4m.··············································· 10分
24.解:(1)根据销售单价从小到大排列得下表:
售价(元/盆) 18 20 22 26 30
第 3页(共 6页)
{#{QQABKYCAogAAAgBAAAgCQwG6CAGQkBEACCoOhEAMoAABSRNABAA=}#}
日销售量(盆) 54 50 46 38 30
故答案为:18,54;20,50;22,46;26,38;30,30;····························· 2分
(2)观察表格可知销售量是售价的一次函数;
设销售量为 y盆,售价为 x元,y=kx+b,
把(18,54),(20,50)代入得:
18 + = 54 = 2
20 + = 50,解得 = 90,∴y=﹣2x+90;·········································· 5分
(3)①∵每天获得 400元的利润,
∴(x﹣15)(﹣2x+90)=400,
解得 x=25或 x=35,
∴要想每天获得 400元的利润,定价为 25元或 35元;································ 7分
②设每天获得的利润为 w元,
根据题意得:w=(x﹣15)(﹣2x+90)=﹣2x2+120x﹣1350=﹣2(x﹣30)2+450,
∵﹣2<0,
∴当 x=30时,w取最大值 450,
∴售价定为 30元时,每天能够获得最大利润 450元.··································10分
25.(1)∠CEB′=20°········································································· 4分
(2)2<BE<10-2 13··········································································· 8分
(3)解:∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°, A
∵折叠△BDE得到△B′DE,
∴△BDE≌△B′DE, G
B′
∴S△BDE=S△B′DE,∠B′=∠B=60°=∠A=∠C, D
∵∠AGD=∠B′GF,∠CFE=∠B′FG,
∴△ADG∽△B′FG,△CFE∽△B′FG,
F
∵GF= m2 n2 ,∴GF2=m2+n2
2△ = ( )2 = , △
2
∴ 2 = (
)2= ,
△ ′
2
△ ′
2 2 2 2 B C △ △ + + E
∴ + = 2 = 2 2 = 1, △ ′ △ ′ +
△ + △
∴ =1
△ ′
∴S△B′FG=S△ADG+S△CFE,
∴S 四边形 ADEC=S△ADG+S△CFE+S 四边形DEFG=S△B′FG+S 四边形DEFG=S△B′DE
∴DE平分等边△ABC的面积,
∴S 1 1 1 9 3△BDE= S△ABC= × ×6× 3 3 = .············································· 12分2 2 2 2
26.(1)b=0,A( 2,0);······································································· 4分
(2)如图 1,AC=DC,∠ACD=90°,设 OC=t
易证△AOC≌△CFD,∴DF=OC=t,FC=AO=2,∴D( t,t+2)
∵点 D在抛物线上,∴ t 2 t 2 4, t 2 t 2 0, t 1或 t 2(舍去)
∴ AC 2 12 22 5,
∴AC= 5;························································································· 6分
第 4页(共 6页)
{#{QQABKYCAogAAAgBAAAgCQwG6CAGQkBEACCoOhEAMoAABSRNABAA=}#}
如图 2,AC=DC,∠ACD=90°,点 D与点 B重合
易得 AO=OC=OB
∴AC=2 2;····························································································8分
如图 3,AC=DC,∠ACD=90°,点 D与点 B重合
易证△AOC≌△CGD,∴DG=OC=t,GC=AO=2,∴D( t, t 2)
∵点 D在抛物线上,∴ t 2 t 2 4, t 2 t 6 0, t 3或 t 2(舍去)
∴ AC 2 32 22 13,
∴AC= 13;························································································10分
(3)△ABH的面积是定值 16,理由如下:
A( 2,0),M(m, m2 4)
设 AM的表达式为 y k1x b2,将 A( 2,0)M(m, m
2 4)代入得
2k1 b1 0 k 2 m
,解得
1
mk1 b1 m
2 4 b1 4 2m
∴AM的表达式为 y (2 m)x 4 2m
第 5页(共 6页)
{#{QQABKYCAogAAAgBAAAgCQwG6CAGQkBEACCoOhEAMoAABSRNABAA=}#}
同理可得 BN的表达式为 y (2 n)x 4 2n
MN的表达式为 y (m n)x 4 mn
∵MN经过点 O
∴ 0 4 mn,mn 4 ·························································· 12分
直线 AM、BN相交于点 H,
y (2 m)x 4 2m
y (n 2)x 2n 4
(n 2)x 2n 4 (2 m)x 4 2m
(4 m n)x 2m 2n
m n 4 x 2m 2n∵ ≠ ,∴
4 m n
x 2m 2n当 时,
4 m n
y (2 m)(2m 2n) 4 2m = (2 m)(2m 2n) (4 2m)(4 m n)
4 m n 4 m n
= 8n 8m 4mm 16 = 8n 8m 16 16 =8
4 m n 4 m n
∴点 H的纵坐标为 8
1
∴△ABH的面积= 4 8 =16······························································· 14分
2
第 6页(共 6页)
{#{QQABKYCAogAAAgBAAAgCQwG6CAGQkBEACCoOhEAMoAABSRNABAA=}#}