二元一次方程组的应用
【学习目标】
1、能将现实问题转化成数学问题,通过合作讨论和小组交流列出方程组解决相应问题。
2、通过巩固练习,培养学生分析问题和解决问题的综合能力。
【学习重点】
1、列二元一次方程组解应用题,选用适当的方法解二元一次方程组。
2、找等量关系。
【学习过程】
一、自主学习
认真阅读教材P128-129内容,尝试完成下面的题目,相信你一定能行!
用二元一次方程组解决实际问题的基本步骤是:
审题——设____________——找 ( http: / / www.21cnjy.com )出____________——列___________——解方程——检验___________________。
【预习自测】
(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?
解:设到甲工厂的人数为x人,到乙工厂的人数为y人
题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数
可列方程为:x-9=
2、抽5人后到甲工厂的人数=
可列方程为:
(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小? 解:设共买x枚10分邮票,y枚20分邮票
题中的两个相等关系:
1、10分邮票的枚数+20分邮票的枚数=总枚数
可列方程为:
2、10分邮票的总价+ =全部邮票的总价
可列方程为:10X+ =
(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?
题中的两个相等关系:
1、做4个小狗的时间+ =3时42分
可列方程为:
2、 +做6个小汽车的时间=3时37分
可列方程为:
二、合作交流
以小组为单位学会例题,并交流课堂随练中内容。
小结:二元一次方程组解决实际问题的基本步骤
审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)
考虑如何根据等量关系设元,列出方程组. (设未知数,列方程组)
3、列出方程组并求解,得到答案. (解方程组)
4、检查和反思解题过程,检验答案的正确性以及是否符合题意. (检验,答)
三、达标测评
【必做题】
课本14页习题7.4
【选做题】
列方程组解下列应用题:
1、古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”那么有_______间房,有_____位客人.
2、今有大、小盛米桶,5个大桶加上1个小桶,可盛3斛米;1个大桶加上5个小桶,可盛2斛米,求大、小桶各盛多少米(斛:量器名,古时用).若设大桶盛x斛米,小桶盛y斛米,则可列方程组为__________.
【提高题】
3、甲、乙两条绳共长17m,如果甲绳减去,乙绳增加1m,两条绳长相等,求甲、乙两条绳各长多少米.若设甲绳长x(m),乙绳长y(m),则可列方程组( ).
A. ( http: / / www.21cnjy.com )
4、戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一样多.”一男生说:“我看到的红帽子是白帽子的2倍”.请问:该船上男、女生各几人?
四、课后作业
【必做题】基础训练基础园
【选做题】基础训练缤纷园、智慧园
【自助餐】
1、《一千零一夜》中有这样 ( http: / / www.21cnjy.com )一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?
2、(2006年南京市)某停车场的收费 ( http: / / www.21cnjy.com )标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?
3、(2011 宜宾)某县为鼓励失地农民自主创业,在2010年对60位自主创业的失地农民进行了奖励,共计奖励了10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?
4、(2011 常德)某城市规定:出租车起步价允许行使的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?