2023-2024学年人教A版数学必修第二册课时达标6.2.2向量的减法运算 同步练习(原卷版+解析版)

文档属性

名称 2023-2024学年人教A版数学必修第二册课时达标6.2.2向量的减法运算 同步练习(原卷版+解析版)
格式 zip
文件大小 149.1KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-03-01 10:22:58

文档简介

第六章 6.2.2向量的减法运算
一.选择题
1.已知非零向量a与b同向,则a-b(  )
A.必定与a同向 B.必定与b同向
C.必定与a是平行向量 D.与b不可能是平行向量
【答案】C
【解析】a-b必定与a或b是平行向量.
2.(多选)在平行四边形ABCD中,下列结论正确的有(  )
A.-=0 B.-=
C.-= D.+=0
【答案】ABD
【解析】因为四边形ABCD是平行四边形,所以=,-=0,-=+=,+=+=0.-=.A,B,D正确.
3.化简以下各式:①++;②-+-;③-+;④++-.结果为零向量的个数是(  )
A.1 B.2
C.3 D.4
【答案】D
【解析】①++=+=-=0;
②-+-=(+)-(+)=-=0;
③-+=(+)-=-=0;
④++-=++=-=0.
4.在△ABC中,=a,=b,则等于(  )
A.a+b B.-a+(-b)
C.a-b D.b-a
【答案】B
【解析】如图,∵=+=a+b,∴=-=-a-b.
5.如图,向量a-b等于(  )
A.3e1-e2 B.e1-3e2
C.-3e1+e2 D.-e1+3e2
【答案】B
【解析】如图,设a-b=,则=e1-3e2,∴a-b=e1-3e2.故选B.
6.对于菱形ABCD,给出下列各式:
①=;②||=||;③|-|=|+|;④|+|=|-|.
其中正确的个数为(  )
A.1 B.2
C.3 D.4
【答案】C
【解析】由菱形的图形,可知向量与的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|-|=|+|=2||,|+|=2||,且||=||,所以|-|=|+|,即③正确;因为|+|=|+|=||,|-|=||,所以④正确.综上所述,正确的个数为3.故选C.
7.已知A,B,C为三个不共线的点,P为△ABC所在平面内一点,若+=+,则下列结论正确的是(  )
A.点P在△ABC内部 B.点P在△ABC外部
C.点P在直线AB上 D.点P在直线AC上
【答案】D
【解析】因为+=+,所以-=-,所以=+,-=,即=.故点P在边AC所在的直线上.
8.在平面上有A,B,C三点,设m=+,n=-,若m与n的长度恰好相等,则有(  )
A.A,B,C三点必在一条直线上
B.△ABC必为等腰三角形且∠B为顶角
C.△ABC必为直角三角形且∠B为直角
D.△ABC必为等腰直角三角形
【答案】C
【解析】以,为邻边作平行四边形ABCD,则m=+=,n=-=-=,由m,n的长度相等可知,两对角线相等,因此平行四边形一定是矩形.故选C.
9.(多选)若a,b为非零向量,则下列命题正确的有(  )
A.若|a|+|b|=|a+b|,则a与b方向相同
B.若|a|+|b|=|a-b|,则a与b方向相反
C.若|a|+|b|=|a-b|,则|a|=|b|
D.若||a|-|b||=|a-b|,则a与b方向相同
【答案】ABD
【解析】当a,b方向相同时,有|a|+|b|=|a+b|,||a|-|b||=|a-b|;当a,b方向相反时,有|a|+|b|=|a-b|,||a|-|b||=|a+b|.故A,B,D均正确.
二.填空题
10.若a,b为相反向量,且|a|=1,|b|=1,则|a+b|=__________,|a-b|=__________.
【答案】0 2
【解析】若a,b为相反向量,则a+b=0,所以|a+b|=0,又因为a=-b,所以|a|=|-b|=1.因为a与-b共线,所以|a-b|=2.
11.如图,已知O为平行四边形ABCD内一点,=a,=b,=c,则=__________.(用a,b,c表示)
【答案】a-b+c
【解析】由题意,在平行四边形ABCD中,=-=a-b.所以==a-b.所以=+=a-b+c.
12.已知||=a,||=b(a>b),||的取值范围是[5,15],则a=__________,b=__________.
【答案】10 5
【解析】因为a-b=|||-|||≤|-|=||≤||+||=a+b,所以解得
13.已知|a|=7,|b|=2,且a∥b,则|a-b|的值为__________.
【答案】5或9
【解析】当a与b方向相同时,|a-b|=||a|-|b||=7-2=5;当a与b方向相反时,|a-b|=|a|+|b|=7+2=9.
三.解答题
14.如图,已知向量a和向量b,用三角形法则作出a-b+a.
解:如图,作向量=a,向量=b,则向量=a-b;
作向量=a,则=a-b+a.
15.已知△ABC是等腰直角三角形,∠ACB=90°,M是斜边AB的中点,=a,=b.求证:
(1)|a-b|=|a|;
(2)|a+(a-b)|=|b|.
证明:因为△ABC是等腰直角三角形,∠ACB=90°,
所以CA=CB.又因为M是斜边AB的中点,所以CM=AM=BM.
(1)因为-=,
又因为||=||,所以|a-b|=|a|.
(2)因为M是斜边AB的中点,
所以=,
所以a+(a-b)=+(-)=+=+=,
因为||=||,
所以|a+(a-b)|=|b|.第六章 6.2.2向量的减法运算
一.选择题
1.已知非零向量a与b同向,则a-b(  )
A.必定与a同向 B.必定与b同向
C.必定与a是平行向量 D.与b不可能是平行向量
2.(多选)在平行四边形ABCD中,下列结论正确的有(  )
A.-=0 B.-=
C.-= D.+=0
++-.结果为零向量的个数是(  )
A.1 B.2
C.3 D.4
4.在△ABC中,=a,=b,则等于(  )
A.a+b B.-a+(-b)
C.a-b D.b-a
5.如图,向量a-b等于(  )
A.3e1-e2 B.e1-3e2
C.-3e1+e2 D.-e1+3e2
6.对于菱形ABCD,给出下列各式:
①=;②||=||;③|-|=|+|;④|+|=|-|.
其中正确的个数为(  )
A.1 B.2
C.3 D.4
7.已知A,B,C为三个不共线的点,P为△ABC所在平面内一点,若+=+,则下列结论正确的是(  )
A.点P在△ABC内部 B.点P在△ABC外部
C.点P在直线AB上 D.点P在直线AC上
8.在平面上有A,B,C三点,设m=+,n=-,若m与n的长度恰好相等,则有(  )
A.A,B,C三点必在一条直线上
B.△ABC必为等腰三角形且∠B为顶角
C.△ABC必为直角三角形且∠B为直角
D.△ABC必为等腰直角三角形
9.(多选)若a,b为非零向量,则下列命题正确的有(  )
A.若|a|+|b|=|a+b|,则a与b方向相同
B.若|a|+|b|=|a-b|,则a与b方向相反
C.若|a|+|b|=|a-b|,则|a|=|b|
D.若||a|-|b||=|a-b|,则a与b方向相同
二.填空题
10.若a,b为相反向量,且|a|=1,|b|=1,则|a+b|=__________,|a-b|=__________.
11.如图,已知O为平行四边形ABCD内一点,=a,=b,=c,则=__________.(用a,b,c表示)
12.已知||=a,||=b(a>b),||的取值范围是[5,15],则a=__________,b=__________.
13.已知|a|=7,|b|=2,且a∥b,则|a-b|的值为__________.
三.解答题
14.如图,已知向量a和向量b,用三角形法则作出a-b+a.
15.已知△ABC是等腰直角三角形,∠ACB=90°,M是斜边AB的中点,=a,=b.求证:
(1)|a-b|=|a|;
(2)|a+(a-b)|=|b|.