中小学教育资源及组卷应用平台
人教版七年级下册数学5.1.2垂线 同步练习
选择题(本大题共10小题,每小题3分,共30分。下列各题的备选答案中,只有一项是最符合题意的,请选出。)
一、选择题
1.a、b、c是平面上任意三条直线,交点可以有( )
A.1个或2个或3个 B. 0个或1个或2个或3个
C.1个或2个 D. 都不对
2.下列说法正确的有 ( )
①因为∠1与∠2是对顶角,所以∠1=∠2;
②因为∠1与∠2是邻补角,所以∠1=∠2;
③因为∠1和∠2不是对顶角,所以∠1≠∠2;
④因为∠1和∠2不是邻补角,所以∠1+∠2≠180°.
A.0个 B.1个 C.2个 D.3个
3.如图,直线AB、CD相交于点O,OE⊥AB,OF⊥CD,则图中与∠EOF相等的角还有( )
A.1个 B.2个 C.3个 D.4个
4.如图,∠PQR=138°,SQ⊥QR,QT⊥PQ,则∠SQT等于( )
A.42° B.64° C.48° D.24°
5.如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF等于( )
A.35° B.45° C.55° D.65°
6.过一条线段外一点,作这条线段的垂线,垂足在
A.这条线段上 B.这条线段的端点处
C.这条线段的延长线上 D.以上都有可能
7.过点P向线段AB所在直线引垂线,正确的是.
A. B.
C. D.
8.如图所示,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是
A.过两点有且只有一条直线
B.过一点只能作一条直线
C.在同一平面内,经过一点有且只有一条直线与已知直线垂直
D.垂线段最短
9.在铁路旁有一城镇,现打算从城镇修一条和铁路垂直的道路,这种方案是唯一的,是因为( )
A.经过两点有且只有一条直线
B.两点之问的所有连线中,线段最短
C.在同一平面内,两直线同时垂直同一条直线,则这两直线也互相垂直.
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
10.点P为直线外一点:点A、B、C为直线上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线的距离是 ( )
A.2 cm B.4 cm C.5 cm D.不超过2 cm
二、填空题(本大题共5小题,每小题4分,共20分。)
11.如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2= °,∠3= °.
12.如图,AD⊥BD,BC⊥CD,AB=a cm,BC=b cm,则BD的取值范围是________.
13.请你在表盘上画出时针与分针,使时针与分针恰好互相垂直.
(1) 时针和分针互相垂直的整点时刻分别为 ;
(2)一天24小时,时针与分针互相垂直________次.
14.如图所示,直线AB与直线CD的位置关系是__________,记作__________,此时,∠AOD=∠__________
=∠__________=∠__________=90°.
15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=__________,∠BOC的补角为__________度.
三、解答题(本大题共5小题,每小题10分,共50分。解答应写出文字说明、证明过程或演算步骤.)
16.如图,已知钝角∠AOB,点D在射线OB上.
(1)作直线DE⊥OB;
(2)作直线DF⊥OA,垂足为F.
17.如图所示,O是直线AB上一点,∠AOC=∠BOC,OC是∠AOD的平分线.
(1)求∠COD的度数.
(2)判断OD与AB的位置关系,并说出理由.
18. 如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;
(1)直接写出图中∠AOC的对顶角为 ,∠BOE的邻补角为 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.
19.如图,已知A、O、B三点在一直线上,∠AOC=120°,OD、OE分别是∠AOC,
∠BOC的平分线.
(1)判断OD与OE的位置关系;
(2)当∠AOC大小发生变化时,OD、OE仍分别是∠AOC、∠BOC的平分线,则OD与OE的位置关系是否改变 请说明理由.
20.如图,AOB为一条在O处拐弯的河,要修一条从村庄P通向这条河的道路,现在有两种设计方案:一是沿PM修路,二是沿PO修路.如果不考虑其他因素,这两种方案哪一个经济一些 它是不是最佳方案?如果不是,请你帮助设计出最佳的方案,并简要说明理由.
一、填空题
1.【答案】B.
【解析】三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交不交于同一点,有三个交点.
2. 【答案】B
【解析】只有①正确。
3. 【答案】B
【解析】与∠EOF相等的角还有:∠BOC,∠AOD.
4.【答案】A
【解析】∠PQS=138°-90°=48°,∠SQT=90°-48°=42°.
5. 【答案】C;
【解析】解:∵∠B0C=∠AOD=70°,
又∵OE平分∠BOC,
∴∠BOE=∠BOC=35°.
∵OF⊥OE,
∴∠EOF=90°.
∴∠AOF=180°﹣∠EOF﹣∠BOE=55°.故选C.
6.【答案】D
7.【答案】C
【解析】过点P向线段AB所在直线引垂线,根据画一条线段或射线的垂线,就是画它们所在直线的垂线,符合要求的只有选项C,故选C.
8.【答案】C
【解析】已知ON⊥l,OM⊥l,所以OM与ON重合,理由是在同一平面内,经过一点有且只有一条直线与已知直线垂直,故选C.
9.【答案】D 提示:注意区分直线性质与垂线性质
10.【答案】D.
二、填空题
11.【答案】30,75.
【解析】∵∠1=30°,∴∠2=∠1=30°,∠BOC=180°﹣∠1=150°,∵OE是∠BOC的平分线,∴∠3=∠BOC=75°.
12. 【答案】bcm<BD<a cm
13.【答案】(1)3时或9时; (2)44
【解析】一天24小时中时针转2圈,分针转24圈,所以分针要超过时针的圈数是:24-2=22(圈),分针每超过时针一圈,前后各有一次垂直,所以一天24小时中分针与时针垂直的次数是:(24-2)×2=22×2=44(次).
14.【答案】垂直,AB⊥CD,DOB,BOC,COA
15.【答案】72°,162
【解析】∵BO⊥AO,∴∠AOB=90°,
∵∠BOC与∠BOA的度数之比为1∶5,∴∠BOC=18°,
∴∠COA=∠BOA–∠BOC=90°–18°=72°.∠BOC的补角为180°–18°=162°.
三、解答题
16.【解析】根据垂直的定义作图即可.
如图所示:
17.
18.【解析】
解:(1)∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;
(2)∵∠DOE=∠AOC=70°,∠DOE=∠BOE+∠EOD及∠BOE:∠EOD=2:3,
∴得,
∴,
∴∠BOE=28°,
∴∠AOE=180°﹣∠BOE=152°.
19.【解析】
解:(1)OD⊥OE.
(2)不变,理由如下:
∵ OD,OE分别是∠AOC,∠BOC的平分线,
∴ ∠COD=∠AOC,∠COE=∠COB.
∴ ∠DOE=(∠AOC+∠COB)=×180°=90°,
∴ OD⊥OE.
20.【解析】
解:本题所给出的两种方案中,沿PO修路这种方案更经济一些,因为PO是OA的垂线段,PM是OA的斜线段,根据垂线段最短可知,PO<PM,但它仍不是最佳方案,最经济的方案应为沿如图所示的线段PN修路.因为垂线段最短得知,线段PN是P与OB上的各点的连线中最短的,PO是P与OA上的各点的连线中最短的,即PN<PO<PM.所以沿线段PN修路是最经济的方案.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)