高中物理 沪科版 必修1 5.3 牛顿运动定律的案例分析(一) 每课一练

文档属性

名称 高中物理 沪科版 必修1 5.3 牛顿运动定律的案例分析(一) 每课一练
格式 zip
文件大小 186.8KB
资源类型 教案
版本资源 沪科版
科目 物理
更新时间 2015-08-27 17:27:49

内容文字预览

5.3 牛顿运动定律的案例分析(一) 每课一练(沪科版必修1)
题组一 从受力确定运动情况
1.粗糙水平面上的物体在水平拉力F作用下做匀加速直线运动,现使F不断减小,则在滑动过程中(  )
A.物体的加速度不断减小,速度不断增大
B.物体的加速度不断增大,速度不断减小
C.物体的加速度先变大再变小,速度先变小再变大
D.物体的加速度先变小再变大,速度先变大再变小
答案 D
解析 合力决定加速度的大小,滑动过程中物体所受合力是拉力和地面摩擦力的合力.因为F逐渐减小,所以合力先减小后反向增大,而速度是增大还是减小与加速度的大小无关,而是要看加速度与速度的方向是否相同.前一阶段加速度与速度方向同向,所以速度增大,后一阶段加速度与速度方向相反,所以速度减小,因此D正确.
2.A、B两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为mA>mB,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离sA与sB相比为(  )
A.sA=sB        B.sA>sB
C.sA答案 A
解析 通过分析物体在水平面上滑行时的受力情况可以知道,物体滑行时受到的滑动摩擦力μmg为合力,由牛顿第二定律知:μmg=ma得:a=μg,可见:aA=aB.
物体减速到零时滑行的距离最大,由运动学公式可得:
v=2aAsA,v=2aBsB,
又因为vA=vB,aA=aB.
所以sA=sB,A正确.
3.假设洒水车的牵引力不变且所受阻力与车重成正比,未洒水时,车匀速行驶,洒水时它的运动将是(  )
A.做变加速运动
B.做初速度不为零的匀加速直线运动
C.做匀减速运动
D.继续保持匀速直线运动
答案 A
解析 a===-kg,洒水时质量m减小,则a变大,所以洒水车做加速度变大的加速运动,故A正确.
4.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车刹车前的速度为(  )
A.7 m/s B.14 m/s
C.10 m/s D.20 m/s
答案 B
解析 设汽车刹车后滑动过程中的加速度大小为a,由牛顿第二定律得:μmg=ma,解得:a=μg.由匀变速直线运动的速度位移关系式得v=2as,可得汽车刹车前的速度为:v0=== m/s=14 m/s,因此B正确.
5.用30 N的水平外力F拉一静止在光滑的水平面上质量为20 kg的物体,力F作用3 s后消失,则第5 s末物体的速度和加速度分别是(  )
A.v=7.5 m/s,a=1.5 m/s2
B.v=4.5 m/s,a=1.5 m/s2
C.v=4.5 m/s,a=0
D.v=7.5 m/s,a=0
答案 C
解析 前3 s物体由静止开始做匀加速直线运动,由牛顿第二定律得:F=ma,解得:a== m/s2=1.5 m/s2,3 s末物体的速度为vt=at=1.5×3 m/s=4.5 m/s;3 s后,力F消失,由牛顿第二定律可知加速度立即变为0,物体做匀速直线运动,所以5 s末的速度仍是3 s末的速度,即4.5 m/s,加速度为a=0,故C正确.
题组二 从运动情况确定受力
6.一个物体在水平恒力F的作用下,由静止开始在一个粗糙的水平面上运动,经过时间t,速度变为v,如果要使物体的速度变为2v,下列方法正确的是(  )
A.将水平恒力增加到2F,其他条件不变
B.将物体质量减小一半,其他条件不变
C.物体质量不变,水平恒力和作用时间都增为原来的两倍
D.将时间增加到原来的2倍,其他条件不变
答案 D
解析 由牛顿第二定律得F-μmg=ma,所以a=-μg,对比A、B、C三项,均不能满足要求,故选项A、B、C均错,由vt=at可得选项D对.
7.某气枪子弹的射出速度达100 m/s,若气枪的枪膛长0.5 m,子弹的质量为20 g,若把子弹在枪膛内的运动看做匀变速直线运动,则高压气体对子弹的平均作用力为(  )
A.1×102 N B.2×102 N
C.2×105 N D.2×104 N
答案 B
解析 根据v=2as,得a== m/s2=1×104 m/s2,从而得高压气体对子弹的作用力F=ma=20×10-3×1×104 N=2×102 N.
8.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车闸到车完全停止需要的时间为5 s,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)(  )
A.450 N B.400 N
C.350 N D.300 N
答案 C
解析 汽车的速度v0=90 km/h=25 m/s
设汽车匀减速的加速度大小为a,则a==5 m/s2
对乘客应用牛顿第二定律可得:
F=ma=70×5 N=350 N,所以C正确.
9.某消防队员从一平台上跳下,下落2 m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m,在着地过程中地面对他双脚的平均作用力为(  )
A.自身所受重力的2倍
B.自身所受重力的5倍
C.自身所受重力的8倍
D.自身所受重力的10倍
答案 B
解析 由自由落体规律可知:v=2gH
缓冲减速过程:v=2ah
由牛顿第二定律列方程F-mg=ma
解得F=mg(1+H/h)=5mg,故B正确.
题组三 整体法和隔离法的应用
10.两个叠加在一起的滑块,置于固定的、倾角为θ的斜面上,如图1所示,滑块A、B质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力(  )
图1
A.等于零 B.方向沿斜面向上
C.大小等于μ1mgcos θ D.大小等于μ2mgcos θ
答案 BC
解析 把A、B两滑块作为一个整体,设其下滑加速度为a,由牛顿第二定律得(M+m)gsin θ-μ1(M+m)gcos θ=(M+m)a,得a=g(sin θ-μ1cos θ),所以a11.物体M放在光滑水平桌面上,桌面一端附有轻质光滑定滑轮,如图2甲所示,若用一根跨过滑轮的轻绳系住M,另一端挂一质量为m的物体,M的加速度为a1;如图乙所示,若另一端改为施加一竖直向下、大小为F=mg的恒力,M的加速度为a2,则(  )
图2
A.a1>a2 B.a1=a2
C.a1答案 C
解析 对M和m组成的整体,由牛顿第二定律有mg=(M+m)a1,a1=,另一端改为施加一竖直向下的恒力时,F=mg=Ma2,a2=,所以a1题组四 综合应用
12.大家知道质量可以用天平测量,可是在宇宙空间怎样测量物体的质量呢?如图3所示是采用动力学方法测量空间站质量的原理图.若已知“双子星号”宇宙飞船的质量为3 200 kg,其尾部推进器提供的平均推力为900 N,在飞船与空间站对接后,推进器工作8 s测出飞船和空间站速度变化是1.0 m/s.则:
图3
(1)空间站的质量为多大?
(2)在8 s内飞船对空间站的作用力为多大?
答案 (1)4 000 kg (2)500 N
解析 (1)飞船和空间站的加速度a==0.125 m/s2,以空间站和飞船整体为研究对象,根据牛顿第二定律有F=Ma,得M==7 200 kg.
故空间站的质量m=7 200 kg-3 200 kg=4 000 kg.
(2)以空间站为研究对象,由牛顿第二定律得
F′=ma=500 N
13.ABS系统是一种能防止车轮被抱死而导致车身失去控制的安全装置,全称防抱死刹车系统.它既能保持足够的制动力,又能维持车轮缓慢转动,已经广泛应用于各类汽车上.有一汽车没有安装ABS系统,急刹车后,车轮抱死,在路面上滑动.
(1)若车轮与干燥路面间的动摩擦因数是0.7,汽车以14 m/s的速度行驶,急刹车后,滑行多远才停下?
(2)若车轮与湿滑路面间的动摩擦因数为0.1,汽车急刹车后的滑行距离不超过18 m,刹车前的最大速度是多少?(取g=10 m/s2)
答案 (1)14 m (2)6 m/s
解析 (1)汽车加速度a1=-=-μ1g=-7 m/s2
由0-v=2a1s1得s1== m=14 m
(2)汽车加速度a2=-=-μ2g=-1 m/s2
根据0-v=2a2s2得
v02== m/s=6 m/s.

5.3 牛顿运动定律的案例分析(二) 每课一练(沪科版必修1)
题组一 瞬时加速度问题
1.质量均为m的A、B两球之间系着一个质量不计的轻弹簧并放在光滑水平台面上,A球紧靠墙壁,如图1所示,今用水平力F推B球使其向左压弹簧,平衡后,突然将力F撤去的瞬间(  )
图1
A.A的加速度大小为 B.A的加速度大小为零
C.B的加速度大小为 D.B的加速度大小为
答案 BD
解析 在将力F撤去的瞬间A球受力情况不变,仍静止,A的加速度为零,选项A错,B对;而B球在撤去力F的瞬间,弹簧的弹力还没来得及发生变化,故B的加速度大小为,选项C错,D对.
2.如图2所示,A、B两球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑.系统静止时,弹簧与细线均平行于斜面,已知重力加速度为g.在细线被烧断的瞬间,下列说法正确的是(  )
图2
A.两个小球的瞬时加速度均沿斜面向下,大小均为gsin θ
B.B球的受力情况未变,瞬时加速度为零
C.A球的瞬时加速度沿斜面向下,大小为gsin θ
D.弹簧有收缩趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零
答案 B
解析 因为细线被烧断的瞬间,弹簧的弹力不能突变,所以B的瞬时加速度为0,A的瞬时加速度为2gsin θ,所以选项B正确,A、C、D错误.
3.如图3所示,A、B两木块间连一轻杆,A、B质量相等,一起静止地放在一块光滑木板上,若将此木板突然抽出,在此瞬间,A、B两木块的加速度分别是(  )
图3
A.aA=0,aB=2g B.aA=g,aB=g
C.aA=0,aB=0 D.aA=g,aB=2g
答案 B
解析 当刚抽去木板时,A、B和杆将作为一个整体一起下落,下落过程中只受重力,根据牛顿第二定律得aA=aB=g,故选项B正确.
4.如图4所示,在光滑的水平面上,质量分别为m1和m2的木块A和B之间用轻弹簧相连,在拉力F作用下,以加速度a做匀加速直线运动,某时刻突然撤去拉力F,此瞬间A和B的加速度的大小为a1和a2,则(  )
图4
A.a1=a2=0
B.a1=a,a2=0
C.a1=a,a2=a
D.a1=a,a2=-a
答案 D
解析 两木块在光滑的水平面上一起以加速度a向右做匀加速运动时,弹簧的弹力F弹=m1a,在力F撤去的瞬间,弹簧的弹力来不及改变,大小仍为m1a,因此木块A的加速度此时仍为a,以木块B为研究对象,取向右为正方向,-m1a=m2a2,a2=-a,所以D项正确.
题组三 动力学中的临界问题
5.如图5所示,质量为M的木板,上表面水平,放在水平桌面上,木板上面有一质量为m的物块,物块与木板及木板与桌面间的动摩擦因数均为μ,若要以水平外力F将木板抽出,则力F的大小至少为(  )
图5
A.μmg B.μ(M+m)g
C.μ(m+2M)g D.2μ(M+m)g
答案 D
解析 将木板抽出的过程中,物块与木板间的摩擦力为滑动摩擦力,物块的加速度大小为am=μg,要想抽出木板,必须使木板的加速度大于物块的加速度,即aM>am=μg,对木板受力分析如图.
根据牛顿第二定律,得:F-μ(M+m)g-μmg=MaM
得F=μ(M+m)g+μmg+MaM>μ(M+m)g+μmg+μMg=2μ(M+m)g,选项D正确.
6.如图6所示,质量为m1=2 kg、m2=3 kg的物体用细绳连接放在水平面上,细绳仅能承受1 N的拉力,水平面光滑,为了使细绳不断而又使它们能一起获得最大加速度,则在向左水平施力和向右水平施力两种情况下,F的最大值是(  )
图6
A.向右,作用在m2上,F= N
B.向右,作用在m2上,F=2.5 N
C.向左,作用在m1上,F= N
D.向左,作用在m1上,F=2.5 N
答案 BC
解析 
若水平力F1的方向向左,如图.
设最大加速度为a1,根据牛顿第二定律,对整体有:
F1=(m1+m2)a1
对m2有:T=m2a1
所以F1=T=×1 N= N,C对,D错.
若水平力F2的方向向右,如图.
设最大加速度为a2,根据牛顿第二定律,对整体有:F2=(m1+m2)a2
对m1有:T=m1a2
所以F2=T=×1 N=2.5 N.A错,B对.
7.如图7所示,质量为M的木箱置于水平地面上,在其内部顶壁固定一轻质弹簧,弹簧下端与质量为m的小球连接.当小球上下振动的某个时刻,木箱恰好不离开地面,求此时小球的加速度.
图7
答案 a=g,方向向下
解析 如图所示,
对木箱受力分析有:F=Mg
对小球受力分析有:mg+F′=ma
又F=F′
解得:a=g,方向向下.
8.如图8所示,一辆卡车后面用轻绳拖着质量为m的物体A,绳与水平面之间的夹角α=53°,A与地面间的摩擦不计,求(sin 53°=0.8):
图8
(1)当卡车以加速度a1=加速运动时,绳的拉力为mg,则A对地面的压力为多大?
(2)当卡车的加速度a2=g时,绳的拉力多大?方向如何?
答案 (1)mg (2) mg,方向与水平面成45°角斜向上
解析 (1)设物体刚离开地面时,具有的加速度为a0
对物体A进行受力分析,可得:ma0=,则a0=g
因为a1Fcos α=ma1
Fsin α+N=mg得N=mg
由牛顿第三定律得,A对地面的压力的大小为mg.
(2)因为a2>a0,所以物体已离开地面.设此时绳与地面成θ角F′=m=mg
所以tan θ=1,θ=45°,即绳的拉力与水平面成45°角斜向上
题组三 多过程问题
9.一辆汽车在恒定牵引力作用下由静止开始沿直线运动,4 s内通过8 m的距离,此后关闭发动机,汽车又运动了2 s停止,已知汽车的质量m=2×103 kg,汽车运动过程中所受阻力大小不变,求:
(1)关闭发动机时汽车的速度大小;
(2)汽车运动过程中所受到的阻力大小;
(3)汽车牵引力的大小.
答案 (1)4 m/s (2)4×103 N (3)6×103 N
解析 (1)汽车开始做匀加速直线运动s0=t1
解得v0==4 m/s
(2)关闭发动机后汽车减速过程的加速度
a2==-2 m/s2
由牛顿第二定律有-f=ma2
解得f=4×103 N
(3)设开始加速过程中汽车的加速度为a1
s0=a1t
由牛顿第二定律有:F-f=ma1
解得F=f+ma1=6×103 N
10.物体以14.4 m/s的初速度从斜面底端冲上倾角为θ=37°的斜坡,到最高点后再滑下,如图9所示.已知物体与斜面间的动摩擦因数为0.15,求:
图9
(1)物体沿斜面上滑的最大位移;
(2)物体沿斜面下滑的时间.(已知sin 37°=0.6,cos 37°=0.8)
答案 (1)14.4 m (2)2.4 s
解析 (1)上升时加速度大小设为a1,由牛顿第二定律得:
mgsin 37°+μmgcos 37°=ma1
解得a1=7.2 m/s2
上滑最大位移为s=
代入数据得s=14.4 m
(2)下滑时加速度大小设为a2,由牛顿第二定律得:
mgsin 37°-μmgcos 37°=ma2
解得a2=4.8 m/s2
由s=a2t2得下滑时间
t== s≈2.4 s
11.如图10所示,在海滨游乐场里有一场滑沙运动.某人坐在滑板上从斜坡的高处A点由静止开始滑下,滑到斜坡底端B点后,沿水平的滑道再滑行一段距离到C点停下来.如果人和滑板的总质量m=60 kg,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(已知sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,人从斜坡滑上水平滑道时没有速度损失,重力加速度g取10 m/s2.
图10
(1)人从斜坡上滑下的加速度为多大?
(2)若由于场地的限制,水平滑道的最大距离BC为L=20 m,则人从斜坡上滑下的距离AB应不超过多少?
答案 (1)2 m/s2 (2)50 m
解析 (1)人在斜坡上受力如图所示,建立直角坐标系,设人在斜坡上滑下的加速度为a1,由牛顿第二定律得:
mgsin θ-f1=ma1
N1-mgcos θ=0
又f1=μN1
联立解得a1=g(sin θ-μcos θ)
=10×(0.6-0.5×0.8) m/s2=2 m/s2.
(2)人在水平滑道上受力如图所示,由牛顿第二定律得:
f2=ma2,N2-mg=0
又f2=μN2
联立解得a2=μg=5 m/s2
设人从斜坡上滑下的距离为LAB,对AB段和BC段分别由匀变速直线运动公式得:
v2-0=2a1LAB,0-v2=-2a2L
联立解得LAB=50 m.
12.如图11所示,质量m=2 kg的物体静止于水平地面的A处,A、B间距L=20 m.物体与地面间的动摩擦因数μ=0.5,现用大小为20 N,与水平方向成53°的力斜向上拉
此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t(已知sin 53°=0.8,cos 53°=0.6,g取10 m/s2).
图11
答案 2 s
解析 物体先以大小为a1的加速度匀加速运动,撤去外力后,再以大小为a2的加速度减速到B,且到B时速度恰好为零.
力F作用时:Fcos 53°-μ(mg-Fsin 53°)=ma1
t时刻:s1=a1t2
vt=a1t
撤去力F后:
μmg=ma2
v=2a2s2
由于s1+s2=L
解得t=2 s