中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
人教版五年级下册数学第一单元观察物体(三)解答题专题训练
1.下面是用小正方体搭建的一些几何体。
(1)从正面看到的是的有( ),从侧面看到的是的有( ),从上面看到的是的有( )。
(2)如果从正面看到的和⑥一样,用4个小正方体摆一摆,有多少种不同的摆法?
2.用10个棱长1cm的小正方体拼在一起如图。
(1)要保证从上面看到的图形不变,最多可以拿走( )个小正方体。
(2)画出从正面和左面看到的图形。
3.观察下面用相同小正方体摆成的物体,从( )面看,看到①和②的形状是一样的。从( )面和( )面看,看到的形状不一样。请分别画出从正面和上面看到的①的形状。
① ②
4.冬冬用同样的小正方体搭了一个图形,从正面、左面和上面看到的图形分别如图。
(1)从右面看是什么图形,你能画出来吗?请在方格纸上画一画。
(2)想一想,搭这个图形需要 个小正方体。
5.如图中的网格是边长为1cm的小正方形。
(1)图2是由图1先向右平移( )格,再绕点A按( )时针方向旋转( )°得到的。
(2)在图1中标出点A。
(3)一个由小正方体搭成的几何体,如果从正面和上面看到的都是图1的形状,那么这个几何体的表面积最少是( )cm2。
6.添一个。
(1)从正面看,形状不变,有几种摆法?
(2)从上面看,形状不变,有几种摆法?
(3)从侧面看,形状不变,有几种摆法?
7.如图所示,要使从上面看到的图形不变:
(1)如果是5个小正方体,可以怎样摆?
(2)如果有6个小正方体,可以有几种不同的摆法?
(3)最少可以摆几个小正方体?
8.用4个同样大小的正方体摆成下面的长方体,按下面的要求再添加一个同样大小的正方体,各有多少种不同的摆法?
(1)从下面看到的仍是,共有( )种不同的摆法。
(2)从侧面看到的是,共有( )种不同的摆法。
(3)从侧面看到的是,共有( )种不同摆法。
(4)从侧面看到的仍是,共有( )种不同摆法。
(5)从上面看到的是,共有( )种摆法。
(6)如果从( )面看到的是,那么它另外两个面分别是什么样的?画出来。
9.已知某立体图形是由若干个棱长为1的小正方体组成的,这个立体图形从三个方向看到的图形如下,每个小正方形的边长都是1,请问这个立体图形是由多少个小正方体组成的?
10.下面的几何体共有( )个小正方体,分别画出从前面、上面、左面看到的形状。
11.观察图中的几何体。
(1)摆这个几何体一共用了多少个小正方体?
(2)聪聪从上图中取走了一个小正方体,发现从正面、上面、右面看到的图形都不变,他取走的是几号小正方体?
(3)明明也取走一个小正方体,发现从右面看到的图形变了,从正面和上面看到的图形都不变,他取走的可能是几号?
(4)亮亮想添上几个小正方体,但希望从正面、上面、右面看到的图形都不变,他最多能添几个?摆在什么位置?
12.下面是用小正方体搭建的一些几何体。(填序号)
(1)从正面看是的有( ),从左面看是的有( )。
(2)用5个同样的小正方体搭建一个从上面看和③一样的几何体,有( )种不同的搭建方法。
(3)你还能提出其他数学问题并解答吗?
13.搭一个这样的立体图形最少需要几个小正方体?最多可以有几个小正方体?
14.把9个棱长是1 cm的小正方体拼在一起(如下图),从正面看和从左面看,所看到的图形的面积之和是多少 取走几号小正方体后,从上面和左面看到的形状不变
15.添一添,画一画。
(1)上面的物体是由( )个小正方体搭成的。
(2)如果给下面的物体添上一个正方体后,从前面看到的图形变成了,这个正方体应该添在什么位置?请你在图上用标出来。
(3)如果给下面的物体添上一个正方体后,从左面看到的图形和原来相同,这个正方体应该添在什么位置?请你在图上用序号①、②、③、④表示出4种符合要求的情况。
16.如图:有一些大小相同的正方体木块堆成一堆,从上往下看是图(1),从前往后看是图(2),从左往右看是图(3),那么这堆木块最多有多少块?最少有多少块?
图(1) 图(2) 图(3)
17.小明摆了一个几何体,从上面和正面观察到的图形都是: .
(1)小明摆这个几何体至少用了多少个小正方体?
(2)如果从右面看到的是,你能确定这个几何体是怎样摆的吗?小明用了多少个小正方体?
18.搭一搭,想一想。
1.从正面看到的是的有_________;从左面看到的是的有_________;
2.从上面看到的是的有_________。
如果从上面看到的和⑤一样,用5个小正方体摆一摆,有____种不同的摆法。
3.你还能提出一个什么问题并解答?
19.据图1三个同学分别看到的是什么形状,你能试着在图2中画一画吗?
20.下面5个图形都具有两个特点:
(1)由4个连在一起的同样大小的正方形组成;
(2)每个小正方形至少和另一个小正方形有一条公共边。
我们把具有以上两个特点的图形叫做“俄罗斯方块”。
如果把某个俄罗斯方块在平面上旋转后与另一个俄罗斯方块相同(比如图中的B与E),那么这两个俄罗斯方块只算一种。
除上面4种外,还有好几种俄罗斯方块,请你把这几种都画出来。
中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案:
1.(1)④⑤;①③;④
(2)5
【分析】(1)从正面看到的是二行,最下面一行三个小正方形并排,上面一行一个放在中间;从侧面看是一列两个,上下排列;从上面看是二行三列,上下行各两个正方形,呈“Z”型排列。由此分析判断。
(2)几何体⑥从正面看到的形状如右: ,根据此图,展开想象,确定物体的形状。
【详解】(1)从正面看到的是的有(④⑤),从侧面看到的是的有(①③),从上面看到的是的有(④)。
(2)如果从正面看到的和⑥一样,用4个小正方体摆一摆,可以有如下摆法。
共有5种。
【点睛】掌握物体三视体的画法及根据物体三视图确定物体的形状是解答的关键。
2.(1)4
(2)见详解
【分析】(1)把第二层和第三层的正方体都去掉,从上面看到的图形不变;
(2)观察图形可知,从正面和左面看到的图形有三层,第一层有3个正方形,第二层有2个正方形,第三层有1个正方形,靠左齐;据此作图即可。
【详解】第二层有3个正方体,第三层有1个正方体
3+1=4(个)
则要保证从上面看到的图形不变,最多可以拿走4个小正方体。
(2)如图所示:
【点睛】本题考查观察物体,明确从不同方向观察到的形状是解题的关键。
3.正;左、上;画图见详解
【分析】观察这两个立体图形,从正面看:①和②都看到两层5个小正方形,下层4个,上层1个且位于从左数的第2个位置;
从左面看:①看到两层3个小正方形,下层2个,上层1个且居左;②看到两层3个小正方形,下层2个,上层1个且居右;
从上面看:①看到两层4个小正方形,上层3个,下层1个且居左,错开对齐;②看到两层4个小正方形,下层3个,上层1个且居左,错开对齐;
据此解答,并画出从正面和上面看到的①的形状。
【详解】从正面看,看到①和②的形状是一样的。
从左面和上面看,看到的形状不一样。
从正面和上面看到的①的形状如下图:
【点睛】本题考查从不同方向观察不同的立体图形,得出相应的平面图形。
4.(1)见详解;
(2)7
【分析】观察图形可知:从正面看到的图形有3层,下面一层是3个正方形,第二列1个正方形居中一层,第三列1个正方形居中一层,从左面看到的图形是有3层,下面一层、中间层是2个正方形,上面一层是1个正方形,靠左边;从上面看到的图形有2列2层,在第一层,中间一列是1个正方形,在第二层,是3个正方形,从右面看到的图形是有3层,下面一层、中间层是2个正方形,上面一层是1个正方形,靠右边;由此可知一共7个正方体。
【详解】(1)
(2)搭这个图形需要7个小正方体。
【点睛】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力。
5.(1)6;逆;90
(2)见详解
(3)22
【分析】(1)平移是指在平面内,将一个图形沿着某个方向移动一定的距离,称为平移;旋转是指在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
(2)旋转中心是不动的,据此找到点A的位置。
(3)从正面和上面看到的都是图1的形状,那么这个几何体至少用了5个正方体拼成,如图:,这个几何体的上下面各有4个小正方形,左右面各有3个小正方形,前后面各有4个小正方形;先计算出正方形的总个数,再乘每个正方形的面积,就是几何体最少的表面积。
【详解】(1)先确定旋转中心A点,将图1向右平移6格,图1点A与图2点A重合,再将图1绕点逆时针旋转90°可得到图2;
(2)在图1中标出点A,作图如下:
(3)拼成的几何体是。
(4+3+4)×2
=11×2
=22(个)
1×1×22=22(cm2)
【点睛】掌握图形的平移、旋转的特点,以及能根据部分视图还原立体图形是解题的关键。
6.(1)8种;
(2)5种;
(3)6种
【分析】(1)从正面看,形状不变,有8种摆法,只要摆在每个正方体的前面或后面即可;
(2)从上面看,形状不变,有5种摆法,只要摆在每个正方体的上面即可;
(3)从侧面看,形状不变,有6种摆法,只要摆在正方体的左边或右边,摆在左边有2种,在右边稍复杂,有4种摆法,因此共6种;据此解答。
【详解】(1)从正面看,形状不变,有8种摆法:
(2)从上面看,形状不变,有5种摆法:
(3)从侧面看,形状不变,有6种摆法:
【点睛】此题考查了从不同方向观察物体和几何体,解答此题关键是要全面考虑。
7.(1)(答案不唯一)
(2)(答案不唯一)
(3)4个
【分析】由上面看到的图形分析可得,几何体的最下面一层有3列,最右边一列有2行.
(1)如果是5个小正方体,可以把第5个摆放在第二层的任何一个小正方体的上面;
(2)如果有6个小正方体,可以有10种不同的摆法:摆成2层的,有6种摆法,摆成3层,有4种摆法;
(3)根据图形分析,几何体至少是1层,因此最少需要4个小正方体。
【详解】(1)如图1,如果是5个小正方体,可以把第5个摆放在第二层的任何一个小正方体的上面。
(2)如图2,如果有6个小正方体,可以有10种不同的摆法:摆成2层的,有6种摆法,摆成3层,有4种摆法;
(3)根据从上面看图分析,几何体至少是1层,因此最少需要4个小正方体。
【点睛】此题考查从不同方向观察物体,解答此题关键是考虑全面。
8.(1)4;(2)8;(3)4;(4)2;(5)1;
(6)上;;
【分析】(1)在4个小正方体任意一个小正方体上放一个正方体,则从下面看到的图形还是,一共有4种不同的方法;
(2)在这排小正方体的前面或后面,与任意一个小正方体并排摆放一个小正方体,则从侧面看到的就是,故一共有4×2=8种不同的摆放方法;
(3)在这排小正方体的任意一个小正方体上面,摆放一个小正方体,则从侧面看到的就是,故一共有4种不同的摆放方法;
(4)要使从侧面看到的还是一个正方形,则第5个小正方体应该摆在两端,所以一共有2种摆放方法;
(5)把第5个小正方体摆放在左起第3个小正方体的前面,则从上面看到的就是,共有1种方法;
(6)如果从上面看到的是,那么从侧面看到的是;从正面看到的是;由此即可解答。
【详解】根据题干分析可得:
(1)从下面看到的仍是,共有4种不同的摆法。
(2)从侧面看到的是 ,共有8种不同的摆法。
(3)从侧面看到的是,共有4种不同摆法。
(4)从侧面看到的仍是,共有2种不同的摆法。
(5)从上面看到的是,共有1种摆法。
(6)如果从上面看到的是,那么从侧面看到的是;从正面看到的是。
【点睛】本题是考查从不同方向观察物体和几何,解答此题关键是动手操作。
9.9个
【分析】由从上向下看到的视图易得最底层小正方体的个数,由从正面看到的视图和从左向右看到的视图找到其余层数里小正方体的个数相加即可。
【详解】综合三视图,这个几何体中,根据各层小正方体的个数可得:从俯视图可知:共三行从前往后是3、2、1块,共6块;主视图有三列:左边一列2个,中间是2个,右边一列3个;左视图有两列:只有中间一列三个,
如图,
共有:1+1+1+1+2+3
=4+2+3
=9(个)
答:这个立体图形是由9个小正方体组成的。
【点睛】考查了从不同方向观察物体和几何体,解答此题应注意从上向下看到的视图决定底层正方体的个数。
10.7;作图见详解
【分析】从前面看到三竖列,第一竖列两个小正方形,第二竖列一个小正方形,第三竖列一个小正方形;
从上面看到三竖列,第一竖列三个小正方形,第二竖列两个小正方形,第三竖列一个小正方形;
从左面看到三竖列,第一竖列两个小正方形,第二竖列一个小正方形,第三竖列一个小正方形。
【详解】由分析得:
【点睛】数正方体的个数时,注意隐藏在角落里的正方体别落下;作图时注意位置的不同,根据看到的位置画图。
11.(1)20个;
(2)5号;
(3)2号或4号;
(4)3个;摆在5号、8号、9号三个小正方体的上方
【分析】(1)几何体从上到下用的小正方体的个数依次是1个、3个、6个和10个,由此求出共有多少个小正方体即可;
(2)要使从正面、上面、右面看到的图形不变,就要考虑取走从正面、上面、右面看都重叠的小正方体,由题目中的几何体可知,是5号小正方体,据此解答即可;
(3)要使从正面看到的图形不变,就不能取走1号、3号、6号或10号中的任意一个,要使从上面看到的图形不变,就不能取走7号、8号、9号或10号中的任意一个,所以他取走的可能是2号或4号,据此解答即可;
(4)要保持从上面看到的图形不变,就不能在最底层上添加小正方体;要保持从正面看到的图形不变,就不能改变每一列最高层的小正方体的个数,所以不能在1号、3号、6号和10号小正方体上方添加;要保持从右面看到的图形不变,就不能改变每一行最高层的小正方体的个数,所以不能在1号、2号、4号和7号小正方体上添加。综上所述,可以摆在5号、8号、9号三个小正方体的上方,据此解答即可。
【详解】(1)(个);
答:摆这个几何体一共用了20个小正方体;
(2)取走了一个小正方体,如果正面、上面、右面看到的图形都不变,取走的是应是5号小正方体;
(3)要使右面看到的图形变了,从正面和上面看到的图形都不变,他取走的可能是2号或4号;
(4)要使从正面、上面、右面看到的图形都不变,他最多能添3个,可以分别摆在5号、8号、9号三个小正方体的上方。
【点睛】本题综合性较强,本题考查了空间思维能力,尤其在拿走或添上小正方体时,一定要从每个面的角度来思考、观察,确定不会发生变化。
12.(1)①③④;②⑥;
(2)6;
(3)从( )面看④与从( )面看⑥的图形是一样的;
左或右;上(答案不唯一)
【分析】(1)假设自己是观察者,先按照题意站在不同方向看各几何体是什么形状,再把从不同方向观察到的平面图形进行分类填写。如果有困难,那么也可用积木摆一摆,看一看,再做判断。
(2)从上面看几何体③是,且几何体③用了3个小正方体。如果用5个小正方体摆,另外2个小正方体可以放在这3个小正方体的任意1个或2个上面,这样从上面看到的形状不变,由此解答即可。
(3)可提出从( )面看④与从( )面看⑥的图形是一样的。
【详解】(1)从正面看,只有一层且这层只有2个小正方形的几何体有①③④;从左面看,有两层且每层只有1个小正方形的几何体有②⑥;
(2)如图:
(3)从左(或右)面看④与从上面看⑥的图形是一样的。
【点睛】本题综合性较强,本题考查了空间思维能力,从什么方位看就假设自己在什么方位,想象出自己看到的图形的样子。
13.最少需要6个小正方体,最多可以有9个小正方体。
【解析】略
14.11cm2 3号
【详解】1×1×(6+5)=11(cm2)
取走3号小正方体后,从上面和左面看到的形状不变。
15.(1)8
(2)(3)图见详解
【分析】(1)观察上面的物体,数一数正方体的数量即可解答。
(2)观察这些图形,并把从前面看到的图形画下来即可解题。
(3)根据原物体从左面看到的图形是,即可解答。
【详解】(1)上面的物体是由8个小正方体搭成的。
(2)作图如下:
(3)作图如下:
【点睛】本题考查了从不同的角度观察物体,关键是要掌握从不同的角度观察物体的方法,会分析从不同的角度观察到的图形的特点。
16.16块;13块
【分析】由从正面看到的图形可得几何体底层有2列4层正方体,由从侧面看到的图形可得几何体底层有3行正方体,所以最多有(4+3×4)个,最少有(4+2×4+1),据此解答。
【详解】最多:4+3×4
=4+12
=16(块)
最少:4+2×4+1
=4+8+1
=13(块)
答:这堆木块最多有16块,最少有13块。
【点睛】本题主要考查三视图,正方体最多的个数为行数×列数,最少个数保证每行或每列有一个正方体即可。
17.(1)5个(2)能.小明用了6个小正方体.
【详解】(1)从正面摆出如图的形状,每个位置需要1个小正方体,则需要4个小正方体;再在底层中间的小正方体后面加1个小正方体即可得到从上面看也得到如图的形状,即至少用4+1=5个小正方体.
答:小明摆这个几何体至少用了5个小正方体.
(2)由(1)所得到的几何体从右面看能看到2列3个小正方形,从左到右第1列2个,第2列1个居于下方与第1列对齐,则再在第2列上方补1个即可得到题目要求的形状,也就是几何体的后一行的上方需补1个小正方体,因为后一行中间有1个小正方体,则在它上面补1个小正方体即可,则用了5+1=6个小正方体.
答:能.小明用了6个小正方体.
18.1.②、④、⑥;⑤、⑦、⑧、⑨
2.③、⑧、⑨;4
3. 如:从右面看到的是的有(②、⑥、⑩)。(答案不唯一)
【详解】略
19.见解析
【详解】试题分析:这个立体图形由6个正方体组成,小亮从正面观察,能看到5个正方体,每个正方体只能看到1个面,即能看到5个正方形,分两行,下行4个,上行1个,上行的1个与下行左第二个对齐;小芳从上面看,能看到5个正方形,分两行,下行2个,上行3个,下行末尾1个与上行第一个同列;小强从右面看,能看到3个正方形,分两列,右列2个,左列1个,下对齐.
解:据图1三个同学分别看到的是什么形状,在图2中画一画如下:
【点评】本题是考查作简单图形的三视图,要注意观察的方向.
20.见详解
【分析】根据“俄罗斯方块”图形的特点作出其余的“俄罗斯方块”。
【详解】作图如下:
【点睛】考查了“俄罗斯方块”的作图,掌握“俄罗斯方块”具有的两个特点:(1)由4个连在一起的同样大小的正方形组成;(2)每个小正方形至少和另一个小正方形有一条公共边。
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)