第一章 专题强化3 带电粒子在有界匀强磁场中的运动 学案(学生版+教师版)—2024年春高中物理人教版选择性必修二

文档属性

名称 第一章 专题强化3 带电粒子在有界匀强磁场中的运动 学案(学生版+教师版)—2024年春高中物理人教版选择性必修二
格式 docx
文件大小 529.5KB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2024-03-10 19:59:51

图片预览

文档简介

专题强化3 带电粒子在有界匀强磁场中的运动
[学习目标] 
1.会分析带电粒子在有界匀强磁场中的运动(重点)。
2.会分析带电粒子在有界匀强磁场中运动的临界问题(难点)。
3.了解多解的成因,会分析带电粒子在有界匀强磁场中运动的多解问题(难点)。
一、带电粒子在有界匀强磁场中的运动
1.直线边界
从某一直线边界射入的粒子,再从这一边界射出时,速度与边界的夹角相等,如图所示。
2.平行边界
3.圆形边界
(1)在圆形磁场区域内,沿半径方向射入的粒子,必沿半径方向射出,如图甲所示。
(2)在圆形磁场区域内,不沿半径方向射入的粒子,入射速度方向与半径的夹角为θ,出射速度方向与半径的夹角也为θ,如图乙所示。
4.三角形边界
如图所示是等边三角形ABC区域内某带正电的粒子垂直AB方向进入磁场的临界轨迹示意图,粒子能从AC间射出的两个临界轨迹如图甲、乙所示。
例1 (2023·宿迁市高二统考期末)如图所示,在边界PQ上方有垂直纸面向里的匀强磁场,一对比荷相同的正、负离子同时从边界上的O点沿与PQ成θ角的方向以相同的速度v射入磁场中,不计离子重力及离子间的相互作用力,则正、负离子(  )
A.在磁场中的运动时间相同
B.在磁场中运动的位移相同
C.出边界时两者的速度相同
D.正离子出边界点到O点的距离更大
例2 在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°,求磁感应强度B′的大小及此次粒子在磁场中运动所用时间t。
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
二、带电粒子在有界匀强磁场中运动的临界问题
解决带电粒子在有界匀强磁场中运动的临界问题的关键,通常以题目中的“恰好”“最大”“至少”等为突破口,寻找临界点,确定临界状态,根据匀强磁场边界和题设条件画好轨迹,建立几何关系求解。
(1)刚好穿出或刚好不能穿出匀强磁场的条件是带电粒子在匀强磁场中运动的轨迹与边界相切。
(2)当以一定的速率垂直射入匀强磁场时,运动的弧长越长、圆心角越大,则带电粒子在有界匀强磁场中的运动时间越长。
(3)比荷相同的带电粒子以不同的速率v进入磁场时,圆心角越大,运动时间越长。
例3 如图所示,真空中狭长区域内的匀强磁场的磁感应强度为B,方向垂直纸面向里,区域宽度为d,边界为CD和EF,速度为v的电子从边界CD外侧垂直于磁场方向射入磁场,入射方向与CD的夹角为θ,已知电子的质量为m、带电荷量为e,为使电子能从另一边界EF射出,电子的速率应满足的条件是(  )
A.v> B.v<
C.v> D.v<
例4 (2020·全国卷Ⅲ)真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。一速率为v的电子从圆心沿半径方向进入磁场。已知电子质量为m,电荷量为e,忽略重力。为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为(  )
A. B. C. D.
三、带电粒子在有界匀强磁场中运动的多解问题
多解的原因:
(1)磁场方向不确定形成多解;
(2)带电粒子电性不确定形成多解;
(3)临界状态不唯一形成多解;
(4)运动的往复性形成多解。
解决此类问题,首先应画出粒子的可能轨迹,然后找出圆心、半径的可能情况。
例5 如图所示,位于A点的离子源在纸面内沿垂直OQ的方向向上射出一束负离子,重力及离子间的相互作用力忽略不计。为把这束负离子约束在OP之下的区域,可加垂直纸面的匀强磁场。已知O、A两点间的距离为s,负离子的比荷为,速率为v,OP与OQ间的夹角为30°,则所加匀强磁场的磁感应强度B应满足(  )
A.垂直纸面向里,B>
B.垂直纸面向里,B<
C.垂直纸面向外,B>
D.垂直纸面向外,B>
例6 如图所示,边长为l的等边三角形ACD内、外分布着方向相反的匀强磁场,磁感应强度大小均为B。顶点A处有一粒子源,能沿∠CAD的角平分线方向发射不同速度的粒子,粒子质量均为m,电荷量均为+q,不计粒子重力。则粒子以下列哪一速度发射时不能通过D点(  )
A. B. C. D.
专题强化3 带电粒子在有界匀强磁场中的运动
[学习目标] 1.会分析带电粒子在有界匀强磁场中的运动(重点)。2.会分析带电粒子在有界匀强磁场中运动的临界问题(难点)。3.了解多解的成因,会分析带电粒子在有界匀强磁场中运动的多解问题(难点)。
一、带电粒子在有界匀强磁场中的运动
1.直线边界
从某一直线边界射入的粒子,再从这一边界射出时,速度与边界的夹角相等,如图所示。
2.平行边界
3.圆形边界
(1)在圆形磁场区域内,沿半径方向射入的粒子,必沿半径方向射出,如图甲所示。
(2)在圆形磁场区域内,不沿半径方向射入的粒子,入射速度方向与半径的夹角为θ,出射速度方向与半径的夹角也为θ,如图乙所示。
4.三角形边界
如图所示是等边三角形ABC区域内某带正电的粒子垂直AB方向进入磁场的临界轨迹示意图,粒子能从AC间射出的两个临界轨迹如图甲、乙所示。
例1 (2023·宿迁市高二统考期末)如图所示,在边界PQ上方有垂直纸面向里的匀强磁场,一对比荷相同的正、负离子同时从边界上的O点沿与PQ成θ角的方向以相同的速度v射入磁场中,不计离子重力及离子间的相互作用力,则正、负离子(  )
A.在磁场中的运动时间相同
B.在磁场中运动的位移相同
C.出边界时两者的速度相同
D.正离子出边界点到O点的距离更大
答案 C
解析 两离子在磁场中运动周期为T=
则知两个离子圆周运动的周期相等。根据左手定则分析可知,正离子逆时针偏转,负离子顺时针偏转,作出两离子的运动轨迹,如图所示
两离子重新回到边界时,正离子的速度偏向角为2π-2θ,轨迹的圆心角也为2π-2θ,运动时间t1=T
同理,负离子运动时间t2=T
正、负离子在磁场中运动时间不相等,故A错误;
根据洛伦兹力提供向心力,则有qvB=
得r=
由题意可知r相同,根据几何知识可得,重新回到边界的位置与O点距离s=2rsin θ,
r、θ相同,则s相同,故两离子在磁场中运动的位移大小相同,方向不同,故B、D错误;
两离子在磁场中均做匀速圆周运动,速度沿轨迹的切线方向,根据圆的对称性可知,重新回到边界时速度大小与方向均相同,故C正确。
例2 在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°,求磁感应强度B′的大小及此次粒子在磁场中运动所用时间t。
答案 (1)负电荷  (2)B 
解析 (1)由粒子的运动轨迹(如图),利用左手定则可知,该粒子带负电荷。粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径R=r,又qvB=m,
则粒子的比荷=。
(2)设粒子从D点飞出磁场,运动轨迹如图,速度方向改变了60°,故AD弧所对圆心角为60°,由几何知识可知,粒子做圆周运动的半径R′==r,又R′=,所以B′=B,此次粒子在磁场中运动所用时间t=T=×=。
二、带电粒子在有界匀强磁场中运动的临界问题
解决带电粒子在有界匀强磁场中运动的临界问题的关键,通常以题目中的“恰好”“最大”“至少”等为突破口,寻找临界点,确定临界状态,根据匀强磁场边界和题设条件画好轨迹,建立几何关系求解。
(1)刚好穿出或刚好不能穿出匀强磁场的条件是带电粒子在匀强磁场中运动的轨迹与边界相切。
(2)当以一定的速率垂直射入匀强磁场时,运动的弧长越长、圆心角越大,则带电粒子在有界匀强磁场中的运动时间越长。
(3)比荷相同的带电粒子以不同的速率v进入磁场时,圆心角越大,运动时间越长。
例3 如图所示,真空中狭长区域内的匀强磁场的磁感应强度为B,方向垂直纸面向里,区域宽度为d,边界为CD和EF,速度为v的电子从边界CD外侧垂直于磁场方向射入磁场,入射方向与CD的夹角为θ,已知电子的质量为m、带电荷量为e,为使电子能从另一边界EF射出,电子的速率应满足的条件是(  )
A.v> B.v<
C.v> D.v<
答案 A
解析 由题意可知,电子从边界EF射出的临界条件为到达边界EF时,速度方向与EF平行,即运动轨迹与EF相切,如图所示。由几何知识得:
R+Rcos θ=d,R=,
解得v0=,当v>v0时,电子能从边界EF射出,故A正确。
例4 (2020·全国卷Ⅲ)真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。一速率为v的电子从圆心沿半径方向进入磁场。已知电子质量为m,电荷量为e,忽略重力。为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为(  )
A. B. C. D.
答案 C
解析 磁感应强度取最小值时对应的电子的运动轨迹临界状态如图所示,设电子在磁场中做圆周运动的半径为r,由几何关系得a2+r2=(3a-r)2,根据洛伦兹力提供向心力有evB=m,联立解得B=,故选C。
三、带电粒子在有界匀强磁场中运动的多解问题
多解的原因:
(1)磁场方向不确定形成多解;
(2)带电粒子电性不确定形成多解;
(3)临界状态不唯一形成多解;
(4)运动的往复性形成多解。
解决此类问题,首先应画出粒子的可能轨迹,然后找出圆心、半径的可能情况。
例5 如图所示,位于A点的离子源在纸面内沿垂直OQ的方向向上射出一束负离子,重力及离子间的相互作用力忽略不计。为把这束负离子约束在OP之下的区域,可加垂直纸面的匀强磁场。已知O、A两点间的距离为s,负离子的比荷为,速率为v,OP与OQ间的夹角为30°,则所加匀强磁场的磁感应强度B应满足(  )
A.垂直纸面向里,B> B.垂直纸面向里,B<
C.垂直纸面向外,B> D.垂直纸面向外,B>
答案 C
解析 当所加匀强磁场方向垂直纸面向里时,由左手定则可知负离子向右偏转,负离子被约束在OP之下的区域的临界条件是离子的运动轨迹与OP相切,如图(大圆弧),由几何知识知R2=OBsin 30°=OB,而OB=s+R2,故R2=s,所以当离子运动轨迹的半径小于s时满足约束条件;由牛顿第二定律可得qvBmin=,所以应满足B>,选项A、B错误。当所加匀强磁场方向垂直纸面向外时,由左手定则可知负离子向左偏转,负离子被约束在OP之下的区域的临界条件是离子的运动轨迹与OP相切,如图(小圆弧),由几何知识知R1=,所以当离子运动轨迹的半径小于时满足约束条件;由牛顿第二定律得qvBmin′=,所以应满足B>,选项C正确,D错误。
例6 如图所示,边长为l的等边三角形ACD内、外分布着方向相反的匀强磁场,磁感应强度大小均为B。顶点A处有一粒子源,能沿∠CAD的角平分线方向发射不同速度的粒子,粒子质量均为m,电荷量均为+q,不计粒子重力。则粒子以下列哪一速度发射时不能通过D点(  )
A. B. C. D.
答案 C
解析 粒子带正电,且经过D点,其可能的轨迹如图所示;
所有圆弧所对应的圆心角均为60°,所以粒子运动的半径为r=(n=1,2,3,…);粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得qvB=m,解得v==(n=1,2,3,…),故选C。