课件20张PPT。华东版八年级数学第19章矩形的性质
两组对边分别平行的四边形是平行四边形平行四边形的性质:平行四边形的对边平行;平行四边形的对边相等;平行四边形的对角相等;平行四边形的邻角互补;平行四边形的对角线互相平分; 温故知新平行四边形的判定:两组对边分别平行的四边形;两组对边分别相等的四边形;两组对角分别相等的四边形;对角线互相平分的四边形;一组对边平行且相等的四边形;平行四边形的判定定理:一个角是
直角两组对边
分别平行矩形情景创设我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情况即特殊的平行四边形,也,这堂课我们就来研究一种恃殊的平行四边形—— 矩形第五节矩形菱形有一个角是直角的平行四边形叫做矩形。矩形的定义:矩形的性质的研究:我们已经知道矩形是特殊的平行四边形,因此矩形除具有平行四边形的性质外,还有它的特殊性质.你能说出矩形有哪些性质吗?四、矩形 两条对角线互相平分三、矩形的两组对角分别相等二、矩形的两组对边分别相等一、矩形的两组对边分别平行五、矩形的邻角互补命题1:矩形的四个角都是直角;已知:四边形ABCD是矩形
求证:∠A=∠B=∠C=∠D=90°证明:∵四边形ABCD是平行四边形, ∠C=90°
∴∠A=∠C=90° ∠B+∠C=180 °
∴∠B=180-∠C=90°
∴∠D=∠B=90°
即∠A=∠B=∠C=∠D=90°已知:四边形ABCD是矩形
求证:AC = BD证明:在矩形ABCD中∵∠ABC = ∠DCB = 90°又∵AB = DC , BC = CB∴△ABC≌△DCB(SAS)∴AC = BD命题2:矩形的对角线相等;边对角线角矩形的性质:矩形对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且平分;直角三角形性质定理:
直角三角形斜边上的中线等于斜边的一半. 如图,矩形ABCD中,对角线AC、BD相交于点O,请探讨OC与BD的关系推论:直角三角形斜边上的中线等于斜边的一半.已知△ABC中∠ACB=90°,AD = BD
求证:CD = AB证明:延长CD到E使DE=CD,
连结AE、BE.∵AD = BD , DE =CD
∴四边形ACBE是平行四边形E?ODCBA相等的线段:AB=CD AD=BC AC=BD OA=OC=OB=OD= AC= BD相等的角:∠DAB=∠ABC=∠BCD=∠CDA=90°
∠AOB=∠DOC ∠AOD=∠BOC
∠OAB=∠OBA=∠ODC=∠OCD ∠OAD=∠ODA=∠OBC=∠OCB等腰三角形有:△OAB △ OBC △OCD △OAD直角三角形有:Rt△ABC Rt△BCD Rt△CDA Rt△DAB全等三角形有:Rt△ABC ≌ Rt△BCD ≌ Rt△CDA ≌ Rt△DAB
△OAB≌△OCD △OAD≌△OCB已知四边形ABCD是矩形思考:矩形ABCD是轴对称图形吗?它的对称轴有几条?矩形是中心对称图形吗?对称中心是?ABCDEFGH.例1: 如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4㎝,求矩形对角线的长? 解:∵四边形ABCD是矩形
∴ OA=OB
∵∠AOB=60° ∴△AOB是等边三角形
∴OA=AB=4(㎝)
∴矩形的对角线长 AC=BD=2OA=8(㎝)AD=4cm例2:如图,△ABC中,∠ACB=900,点D、E分别为AC、AB的中点,点F在BC延长线上,且∠CDF=∠A,
求证:四边形DECF是平行四边形;四边形ABCD是矩形
若已知AB=8㎝,AD=6㎝,
则AC= ㎝ OB= ㎝
若已知∠CAB=40°,则∠OCB=
∠OBA= ∠AOB= ∠AOD=
若已知AC=10㎝,BC=6㎝,则矩形的周长= ㎝
矩形的面积= ㎝2
4 若已知 ∠DOC=120°,AD=6㎝,则AC= ㎝550°10100°40°12482880°试一试:练一练已知△ABC是Rt△,∠ABC=Rt∠,
BD是斜边AC上的中线若BD=3㎝则AC= ㎝
2 若∠C=30°,AB=5㎝,则AC= ㎝,
BD= ㎝,∠BDC=6510120°有一个角是直角的
平行四边形叫矩形2.矩形的性质:对边平行且相等四个角都是直角对角线互相平分 且相等1.矩形的定义:5.矩形是轴对称图形,也是中心对称图形.3.直角三角形斜边上的中线等于斜边的一半4. 矩形的对角线把矩形分成两对全等的
等腰三角形课堂小结作业:如图四边形ABCD中,∠ABC=∠ADC=900,E是AC中点,EF平分∠BED交BD于点F,
(1)猜想EF与BD具有怎样的关系?
(2)试证明你的猜想。再 见