2015人教版数学八上14.1《整式的乘法》(4课时)课件(4份打包)

文档属性

名称 2015人教版数学八上14.1《整式的乘法》(4课时)课件(4份打包)
格式 zip
文件大小 600.7KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-09-04 14:59:59

文档简介

课件15张PPT。14.1.1 同底数幂的乘法教学目标:
1.理解同底数幂的乘法的性质的推导过程;
2.能运用性质来解答一些变式练习;
3.能运用性质来解决一些实际问题. an 表示的意义是什么?其中a、n、an分 别叫做什么? an底数幂指数思考:an = a × a × a ×… a
n个a
25表示什么?
10×10×10×10×10 可以写成什么形式?
问题: 25 = .
?
2×2×2×2×2105 10×10×10×10×10 = .(乘方的意义)(乘方的意义) 式子103×102的意义是什么? 思考:103与102 的积 底数相同 这个式子中的两个因式有何特点?请同学们先根据自己的理解,解答下列各题.
103 ×102 =(10×10×10)×(10×10) = 10( )
23 ×22 = =2( )

5(2×2×2)×(2×2)5 a3×a2 = = a( ) .5(a a a)(a a)=2×2×2×2×2= a a a a a3个a2个a5个a思考:请同学们观察下面各题左右两边,底数、指数有什么关系?
103 ×102 = 10( )
23 ×22 = 2( )
a3× a2 = a( ) 5 55 猜想: am · an= ? (当m、n都是正整数)
  分组讨论,并尝试证明你的猜想是否正确. 3+2 3+2 3+2 = 10( );
= 2( );
= a( ) 。
猜想: am · an= (当m、n都是正整数) am · an =m个an个a= aa…a=am+n(m+n)个a即am · an = am+n (当m、n都是正整数)(aa…a)(aa…a)(乘方的意义)(乘法结合律)(乘方的意义)真不错,你的猜想是正确的!am · an = am+n (当m、n都是正整数)同底数幂相乘,想一想: 当三个或三个以上同底数幂相乘时,是否也  ? 具有这一性质呢? 怎样用公式表示?底数  ,指数  。不变相加 同底数幂的乘法性质: 请你尝试用文字概括这个结论。 我们可以直接利用它进行计算.如 43×45=43+5=48 如 am·an·ap = am+n+p (m、n、p都是正整数)运算形式运算方法(同底、乘法) (底不变、指加法) 幂的底数必须相同,
相乘时指数才能相加.1.计算: (1)107 ×104 ; (2)x2 · x5 . 解:(1)107 ×104 =107 + 4= 1011
(2)x2 · x5 = x2 + 5 = x72.计算:(1)23×24×25 (2)y · y2 · y3 解:(1)23×24×25=23+4+5=212
(2)y · y2 · y3 = y1+2+3=y6 尝试练习am · an = am+n (当m、n都是正整数)    am·an·ap = am+n+p (m、n、p都是正整数) 练习一
1.???计算:(抢答)(1011 )( a10 )( x10 )( b6 )(2) a7 ·a3(3) x5 ·x5 (4) b5 · b (1) 105×106Good!2.??计算:
(1)x10 · x (2)10×102×104
(3) x5 ·x ·x3 (4)y4·y3·y2·y
解:(1)x10 ·x = x10+1= x11
(2)10×102×104 =101+2+4 =107
(3)x5 ·x ·x3 = x5+1+3 = x9
(4)y4 ·y3 ·y2 ·y= y4+3+2+1= y10 练习二
下面的计算对不对?如果不对,怎样改正?
(1)b5 · b5= 2b5 ( ) (2)b5 + b5 = b10 ( )
(3)x5 ·x5 = x25 ( ) (4)y5 · y5 = 2y10 ( )
(5)c · c3 = c3 ( ) (6)m + m3 = m4 ( )
m + m3 = m + m3 b5 · b5= b10 b5 + b5 = 2b5 x5 · x5 = x10 y5 · y5 =y10 c · c3 = c4× × × ×××了不起!填空:
(1)x5 ·( )= x 8 (2)a ·( )= a6
(3)x · x3( )= x7 (4)xm ·(  )=x3m
变式训练x3a5 x3x2m真棒!真不错!你真行!太棒了!思考题(1) x n · xn+1 ;(2) (x+y)3 · (x+y)4 .1.计算:解:x n · xn+1 =解:(x+y)3 · (x+y)4 =am · an = am+n xn+(n+1)= x2n+1公式中的a可代表一个数、字母、式子等.(x+y)3+4 =(x+y)72.填空:
(1) 8 = 2x,则 x = ;
(2) 8× 4 = 2x,则 x = ;
(3) 3×27×9 = 3x,则 x = .35623 23 3253622 × = 33 32 × ×=同底数幂相乘, 
底数   指数 
am · an = am+n (m、n正整数)小结我学到了什么? 知识    方法  “特殊→一般→特殊”
  例子 公式 应用不变,相加.课件9张PPT。人教版 · 数学 · 八年级(上)人教新课标第2课时
幂的乘方14.1整式的乘法一、复习引入1、叙述同底数幂乘法法则同底数幂相乘底数不变,指数相加。2、用字母表示同底数幂乘法法则am·an=am+n3、计算:①a2·a5·an;②a4·a4·a4①a2+5+n②a12二、探求新知根据乘方的意义和同底数幂乘法填空:
(1)(32)3=32×32×32=3( )
(2) (a2)3=a2·a2·a2=a( )
(3)(am)3=am·am·am=a( )
6探究一63m二、探求新知你认为(am)n等于什么?amn探究二你能对你的猜想给出验证吗?二、探求新知总结规律1、请你总结一下幂的乘方法则是什么?幂的乘方,底数不变,指数相乘。2、用字母表示幂的乘方法则:(am)n=amn二、探求新知例题讲解例2:计算:
(1) (103)5; (2) (a4)4; (3) (am)2; (4) -(x4)3.解: (1) (103)5=103×5 = 1015 ; (2) (a4)4=a4×4=a16;
(3) (am)2= a mΧ×2 = a 2m ; (4) -(x4)3 = - x 4×3 = - x12 .三、巩固练习 1、判断题:
(1)a5+a5=2a10 ( )
(2)(x3)3=x6 ( )
(3)(-3)2?(-3)4=(-3)6( )
(4)x3+y3=(x+y)3 ( ) ××√×三、巩固练习 2、若(x2)n=x8,则n=_______4 3、若[(x3)m]2=x12,则m=_______2 4、若xm?x2m=2,求x9m的值.8五、小结回顾1、请你总结一下幂的乘方法则是什么?幂的乘方,底数不变,指数相乘。2、用字母表示幂的乘方法则:(am)n=amn课件10张PPT。人教版 · 数学 · 八年级(上)人教新课标第3课时
积的乘方14.1整式的乘法一、问题引入1、若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?它的体积应是V=(1.1×103)3cm32、这个结果是幂的乘方形式吗?不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,应是积的乘方.积的乘方如何运算呢?能不能找到一个运算法则呢?二、探求新知1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?
(1)(ab)2=(ab)?(ab)=(a?a)?(b?b)=a( )b( )
(2)(ab)3=_____________=_______________=a( )b( )
探究一22(ab)?(ab) ?(ab)(a?a?a)?(b?b?b)33二、探求新知1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?
(3)(ab)n=________________
=_________________________________
=a( )b( )(n是正整数)
探究一nn二、探求新知总结规律1、请你总结一下积的乘方法则是什么?积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2、用字母表示积的乘方法则:(ab)n=an?bn(n是正整数)二、探求新知探究二解决前面提到的问题:正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?正方体的体积V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:
V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3)
二、探求新知探究三积的乘方的运算法则能否进行逆运算呢?积的乘方法则可以进行逆运算.
即:an?bn=(ab)n(n为正整数)三个或三个以上的因式的积的乘方是否也具有这一性质?三个或三个以上的因式的积的乘方也具有这一性质.即:(abc)n=an?bn?cn(n为正整数)二、探求新知例题讲解例3 计算:
(1) (2a)3 ; (2) (-5b)3 ;
(3) (xy2)2 ; (4) (-2x3)4.解: (1) (2a)3=23?a3 = 8a3;
(2) (-5b)3=(-5)3?b3=-125b3;
(3) (xy2)2=x2?(y2)2=x2y4;
(4) (-2x3)4=(-2)4?(x3)4=16x12.三、小结回顾1、请你总结一下积的乘方法则是什么?积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2、用字母表示积的乘方法则:(ab)n=an?bn(n是正整数)三、小结回顾3、积的乘方的运算法则能否进行逆运算呢?积的乘方法则可以进行逆运算.
即:an?bn=(ab)n(n为正整数)4、三个或三个以上的因式的积的乘方是否也具有这一性质?三个或三个以上的因式的积的乘方也具有这一性质.即:(abc)n=an?bn?cn(n为正整数)课件16张PPT。人教版 · 数学 · 八年级(上)人教新课标第4课时
整式的乘法14.1整式的乘法一、问题引入请同学们回忆幂的3条运算性质:am?an=am+n (am)n=amn (ab)n=anbn (m,n都是正整数)二、探求新知问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?探究一单项式乘以单项式(3×105)×(5×102)(3×105)×(5×102)等于多少呢?利用乘法交换律和结合律有:(3×105)×(5×102)=(3×5)×(105×102)=15×107这种书写规范吗?不规范,应为1.5×108.二、探求新知问题的推广:如果将上式中的数字改为字母,即ac5?bc2,如何计算?探究一单项式乘以单项式ac5?bc2
=(a?c5)?(b?c2)
=(a?b)?(c5?c2)
=abc5+2
=abc7
二、探求新知类似地,请你试着计算:
(1)2c5?5c2; (2)(-5a2b3)?(-4b2c)探究一单项式乘以单项式10c720a2b5c2c5和5c2,-5a2b3和-4b2c都是单项式,那么怎样进行单项式乘法呢?单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.二、探求新知例4 计算:
(1)(-5a2b)(-3a); (2)(2x)3(-5xy3)探究一单项式乘以单项式解:(1) (-5a2b)(-3a)
= [(-5)×(-3)](a2?a)b
= 15a3b(2) (2x)3(-5xy2)
=8x3(-5xy2)
=[8×(-5)](x3?x)y2
=-40x4y2
二、探求新知问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶),分别是a,b,c。你能用不同方法计算它们在这个月内销售这种商品的总收入吗?探究二单项式乘以多项式一种方法是先求三家连锁店的总销售量,再求总收入,
即总收入为:________________所以:m(a+b+c)= ma+mb+mc另一种方法是先分别求三家连锁店的收入,再求它们的和,即总收入为:________________ma+mb+mcm(a+b+c)二、探求新知提出问题:根据上式,你能总结出单项式与多项式相乘的方法吗?探究二单项式乘以多项式单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
即:m(a+b+c)= ma+mb+mc例1 计算:(1)(-4x)·(2x2+3x-1); 解: (-4x)·(2x2+3x-1)==-8x3-12x2+4x(-4x)·(2x2)(-4x)·3x(-4x)·(-1)++二、探求新知探究二单项式乘以多项式二、探求新知探究二单项式乘以多项式例1 计算:+二、探求新知探究三多项式乘以多项式问题 如图,为了扩大街心花园的绿地面积,把一块原长a米,宽m米的长方形绿地,增长了b米,加宽了n米.你能用几种方法求出扩大后的绿地的面积?扩大后的绿地可能看成长为(a+b)米,宽为(m+n)米的长方形,所以这块绿地的面积为(a+b)(m+n)米2.扩大后的绿地还可以看成由四个小长方形组成,所以这块绿地的面积为(am+an+bm+bn)米2.因此(a+b)(m+n)=am+an+bm+bn二、探求新知探究三多项式乘以多项式引导观察:等式的左边(a+b)(m+n)是两个多项式(a+b)与(m+n)相乘 ,把(m+n)看成一个整体,那么两个多项式(a+b)与(m+n)相乘的问题就转化为单项式与多项式相乘,这是一个我们已经解决的问题,请同学们试着做一做. 过程分析:(a+b)(m+n)
=a(m+n)+b(m+n)
=am+an+bm+bn提出问题:根据上式,你能总结出多项式与多项式相乘的方法吗?多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.二、探求新知探究三多项式乘以多项式 例6 计算:(1) ( 3x + 1 )( x – 2 ) ;
(2) ( x – 8 y )( x – y ) . 解: (1)原式 = 3x · x – 3x ·2 + 1·x - 1×2 (2)原式 = x · x – x · y – 8y · x + 8y ·y= 3 x2 - 6 x + x – 2=3x2 – 5x - 2 = x 2 - x y – 8xy + 8y2 = x 2 - 9xy + 8y2 二、探求新知探究三多项式乘以多项式三、小结回顾1、单项式相乘的法则是什么?单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2、单项式与多项式相乘的方法是怎样的?单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
即:m(a+b+c)= ma+mb+mc三、小结回顾3、多项式与多项式相乘的方法是怎样的?多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.