人教A版(2019) 必修 第二册2024春高中数学第十章 概率 课时分层作业(5份打包)(含解析)

文档属性

名称 人教A版(2019) 必修 第二册2024春高中数学第十章 概率 课时分层作业(5份打包)(含解析)
格式 zip
文件大小 574.7KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-03-13 13:59:07

文档简介

课时分层作业(四十六) 古典概型
一、选择题
1.一部三册的小说,任意排放在书架的同一层上,则第一册和第二册相邻的概率为(  )
A.   B.   C.   D.
2.某天放学后,教室里还剩下2位男同学和2位女同学.若他们随机依次走出教室,则第2位走出的是男同学的概率是(  )
A. B. C. D.
3.某学校美术室收藏有4幅国画,其中山水画、花鸟画各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的国画的概率为(  )
A. B. C. D.
4.(2022·新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为(  )
A. B. C. D.
5.(多选)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是(  )
A.任取2件,则取出的2件中恰有1件次品的概率是
B.每次抽取1件,不放回地抽取两次,样本点总数为16
C.每次抽取1件,不放回地抽取两次,则取出的2件中恰有1件次品的概率是
D.每次抽取1件,有放回地抽取两次,样本点总数为16
二、填空题
6.从1,2,3,4四个数中,有放回地选取两个数,其中一个数是另一个数的2倍的概率是________.
7.(2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.
8.在国庆阅兵中,某兵种A,B,C三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B先于A,C通过的概率为________.
三、解答题
9.一个盒子里装有完全相同的十个小球,分别标上1,2,3,…,10这10个数字,现随机地抽取两个小球,如果:
(1)抽取是不放回的;
(2)抽取是有放回的.
分别求两个小球上的数字为相邻整数的概率.
10.《史记》中讲述了田忌与齐王赛马的故事.“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为(  )
A. B. C. D.
11.《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、離、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为(  )
A. B. C. D.
12.(多选)已知一个古典概型的样本空间Ω和事件A和B,其中n(Ω)=12,n(A)=6,n(B)=4,n(A∪B)=8,那么下列事件概率正确的是(  )
A.P(AB)=  B.P(A∪B)=
C.P=  D.P=
13.一次抛掷两枚均匀的骰子,得到的点数为m和n,则关于x的方程x2+(m+n)x+4=0无实数根的概率是________.
14.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(1)求频率分布直方图中a的值;
(2)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)内的概率.
15.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
课时分层作业(四十六) 古典概型
1.C [设一部三册的小说为1,2,3,所以试验的样本空间Ω= {(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)},共6个样本点,事件“第一册和第二册相邻”包含4个样本点,故第一册和第二册相邻的概率为P=.]
2.A [法一:2位男同学和2位女同学走出教室的所有可能顺序为(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),共6种,所以第2位走出的是男同学的概率P=.故选A.
法二:只考虑第二位同学,出来男生或是女生是等可能的,故概率为.故选A.]
3.D [设2幅山水画为A1,A2,2幅花鸟画为B1,B2,从中随机抽取2幅所包含的样本点为(A1,A2),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(B1,B2),共6个,满足条件的样本点有4个,故P=.故选D.]
4.D [从2至8的7个整数中随机取2 个不同的数,共有21种不同的取法,
若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=.
故选D.]
5.ACD [记4件产品分别为1,2,3,a,其中a表示次品.在A中,样本空间Ω={(1,2),(1,3),(1,a),(2,3),(2,a),(3,a)},共6个样本点,且每个样本点出现的可能性相等,“恰有一件次品”的样本点为(1,a),(2,a),(3,a),因此其概率P=,A正确;在B中,每次抽取1件,不放回地抽取两次,样本空间Ω={(1,2),(1,3),(1,a),(2,1),(2,3),(2,a),(3,1),(3,2),(3,a),(a,1),(a,2),(a,3)},因此n(Ω)=12,B错误;在C中,“取出的两件中恰有一件次品”的样本点数为6,其概率为,C正确;在D中,每次抽取1件,有放回地抽取两次,样本空间Ω={(1,1),(1,2),(1,3),(1,a),(2,1),(2,2),(2,3),(2,a),(3,1),(3,2),(3,3),(3,a),(a,1),(a,2),(a,3),(a,a)},因此n(Ω)=16,D正确.]
6. [用列举法知,有放回地选取两个数共有16个样本点,且每个样本点出现的可能性相等,其中一个数是另一个数的2倍的有(1,2),(2,1),(2,4),(4,2),共4个样本点,故所求的概率为.]
7. [甲、乙等5名同学分别标记为a1,a2,a3,a4,a5,其中甲标记为a1,乙标记为a2.从中随机选3名参加社区服务工作的事件有{a1,a2,a3},{a1,a2,a4},{a1,a2,a5},{a2,a3,a4},{a2,a3,a5},{a3,a4,a5},{a1,a3,a4},{a1,a3,a5},{a2,a4,a5},{a1,a4,a5},共计10种.甲、乙都入选的事件有{a1,a2,a3},{a1,a2,a4},{a1,a2,a5},共计3种,故所求概率P=.]
8. [用(A,B,C)表示A,B,C通过主席台的次序,则试验的样本空间Ω= {(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A)},共6个样本点,其中事件B先于A,C通过的有(B,C,A)和(B,A,C),共2个样本点,故所求概率P=.]
9.解:设事件A:两个小球上的数字为相邻整数.
则事件A包括的样本点有(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,9),(9,8),(8,7),(7,6),(6,5),(5,4),(4,3),(3,2),(2,1),共18个.
(1)不放回取球时,总的样本点数为90,故P(A)=.
(2)有放回取球时,总的样本点数为100,故P(A)=.
10.A [设齐王的上、中、下三个等次的马分别为a,b,c,田忌的上、中、下三个等次的马分别记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题意,其中Ab,Ac,Bc是田忌获胜,则田忌获胜的概率为.故选A.]
11.C [从八卦中任取一卦,基本事件总数n=8,
这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m=3,
∴所求概率为P=.故选C.]
12.ABC [对于选项A:n(AB)=n(A)+n(B)-n(A∪B)=6+4-8=2,所以P(AB)=,故A正确;
对于选项B:P(A∪B)=,故B正确;
对于选项C:n=n(B)-n(AB)=4-2=2,
所以P=,故C正确;
对于选项D:n=n(Ω)-n(A∪B)=12-8=4,所以P=,故D错误.故选ABC.]
13. [易知总的样本点个数为36,且每个样本点出现的可能性相等.因为方程无实数根,所以Δ=(m+n)2-16<0,即-414.解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.
(2)受访职工评分在[50,60)内的有50×0.006×10=3(人),记为A1,A2,A3;
受访职工中评分在[40,50)内的有50×0.004×10=2(人),记为B1,B2.
从这5名受访职工中随机抽取2人,
所包含的样本点有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10个.
所抽取2人的评分都在[40,50)内包含的样本点有1个,即(B1,B2),故所求的概率为.
15.解:用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
S={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),(1,1),(2,2),(3,3),(4,4)},所以样本点总数n=16.
(1)记“xy≤3”为事件A,则事件A包含的样本点个数共5个,
即A={(1,1),(1,2),(1,3),(2,1),(3,1)}.
所以P(A)=,即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3<xy<8”为事件C.
则事件B包含的样本点共6个,即B={(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)}.
所以P(B)=.
事件C包含的样本点共5个,即C={(1,4),(2,2),(2,3),(3,2),(4,1)}.
所以P(C)=.因为>,所以小亮获得水杯的概率大于获得饮料的概率.课时分层作业(四十七) 概率的基本性质
一、选择题
1.某学校高一年级派甲、乙两个班参加学校组织的拔河比赛,甲、乙两个班取得冠军的概率分别为和,则该年级在拔河比赛中取得冠军的概率为(  )
A.  B.  C.  D.
2.若A,B是互斥事件,则(  )
A.P(A∪B)<1   B.P(A∪B)=1
C.P(A∪B)>1   D.P(A∪B)≤1
3.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为(  )
A.0.3 B.0.4 C.0.6 D.0.7
4.某学校组织参加兴趣小组,其中有82%的学生选择数学小组,60%的学生选择英语小组,96%的学生选择数学或英语小组,则该学校既选择数学小组又选择英语小组的学生数占该校学生总数的比例是(  )
A.62%  B.56%  C.46%  D.42%
5.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是(  )
A.  B.
C.  D.
二、填空题
6.事件A,B互斥,它们都不发生的概率为,且P(A)=2P(B),则P(A)=_______.
7.已知盒子中有散落的黑白棋子若干粒,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是________.
8.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35,0.30,0.25,则不命中靶的概率是________.
三、解答题
9.(源自湘教版教材)某企业有三个分厂,现将男女职工人数统计如下:
项目 第一分厂 第二分厂 第三分厂 总计
男 400人 350人 250人 1 000人
女 100人 50人 50人 200人
总计 500人 400人 300人 1 200人
若从中任意抽取一名职工,则该职工是女性或是第三分厂职工的概率是多少?
10.(2022·北京丰台期中)在一次随机试验中,其中3个事件A1,A2,A3的概率分别为0.2,0.3,0.5,则下列说法中正确的是(  )
A.A1+A2与A3是互斥事件,也是对立事件
B.A1+A2+A3是必然事件
C.P(A2∪A3)=0.8
D.P(A1+A2)≤0.5
11.已知随机事件发生的概率满足P(A∪B)=,某人猜测事件发生,则此人猜测正确的概率为(  )
A.1  B. C. D.0
12.(多选)黄种人群中各种血型的人所占的比例如下表所示:
血型 A B AB O
该血型的人所占比例 0.28 0.29 0.08 0.35
已知同种血型的人可以输血,O型血可以给任何一种血型的人输血,任何血型的人都可以给AB血型的人输血,其他不同血型的人不能互相输血.下列结论正确的是(  )
A.任找一个人,其血可以输给B型血的人的概率是0.64
B.任找一个人,B型血的人能为其输血的概率是0.29
C.任找一个人,其血可以输给O型血的人的概率为1
D.任找一个人,其血可以输给AB型血的人的概率为1
13.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=________.
14.袋中有外形、质量完全相同的红球、黑球、黄球、绿球共12个,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是.
(1)试分别求得到黑球、黄球、绿球的概率;
(2)从中任取一球,求得到的不是红球也不是绿球的概率.
15.某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7,则中一等奖;等于6或5,则中二等奖;等于4,则中三等奖;其余结果不中奖.
(1)求中二等奖的概率;
(2)求不中奖的概率.
课时分层作业(四十七) 概率的基本性质
1.A [甲班取得冠军和乙班取得冠军是两个互斥事件,该校高一年级取得冠军是这两个互斥事件的和事件,其概率为两个互斥事件的概率之和,即为.故选A.]
2.D [∵A,B互斥,∴P(A∪B)=P(A)+P(B)≤1(当A,B对立时,P(A∪B)=1).]
3.B [设事件A为“只用现金支付”,事件B为“既用现金支付也用非现金支付”,事件C为“不用现金支付”,则P(A)+P(B)+P(C)=1,所以P(C)=1-P(A)-P(B)=0.4.故选B.]
4.C [设“选择数学小组”为事件A,“选择英语小组”为事件B,则“选择数学或英语小组”为事件A+B,“既选择数学小组又选择英语小组”为事件AB,
依题意得P(A)=82%,P(B)=60%,P(A∪B)=96%,
所以P(AB)=P(A)+P(B)-P(A∪B)=82%+60%-96%=46%.
故该学校既选择数学小组又选择英语小组的学生数占该校学生总数的比例是46%.]
5.D [由题意可知

即解得<a≤.]
6. [因为事件A,B互斥,它们都不发生的概率为,
所以P(A)+P(B)=1-.
又因为P(A)=2P(B),所以P(A)+P(A)=,
解得P(A)=.]
7. [从中取出2粒棋子,“都是黑棋子”记为事件A,“都是白棋子”记为事件B,则A,B为互斥事件.所求概率为P(A∪B)=P(A)+P(B)=.]
8.0.10 [“射手命中圆面Ⅰ”为事件A,“命中圆环Ⅱ”为事件B,“命中圆环Ⅲ”为事件C,“不中靶”为事件D,则A,B,C彼此互斥,故射手中靶的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.35+0.30+0.25=0.90.
因为中靶和不中靶是对立事件,故不命中靶的概率为P(D)=1-P(A∪B∪C)=1-0.90=0.10.]
9.解:设A=“抽到女工”,B=“抽到第三分厂职工”,则
P(A)=,P(B)=,P(A∩B)=,
因此,该职工是女性或是第三分厂职工的概率为
P(A∪B)=P(A)+P(B)-P(A∩B)

=.
10.D [由已知条件可知,一次随机试验中产生的事件可能不止事件A1,A2,A3这三个事件,故P(A1∪A2∪A3)≤P(A1)+P(A2)+P(A3)=1,从而AB错误;P(A2∪A3)≤P(A2)+P(A3)=0.8,故C错误;
P(A1+A2)≤P(A1)+P(A2)=0.5,故D正确.故选D.]
11.C [事件=1-P(A∪B)=1-,故选C.]
12.AD [任找一个人,其血型为A,B,AB,O型血的事件分别为A′,B′,C′,D′,它们两两互斥.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,所以“可以输给B型血的人”为事件B′∪D′,根据概率的加法公式,得P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64,A正确;B型血的人能为B型、AB型的人输血,其概率为0.29+0.08=0.37,B错误;由O型血只能接受O型血的人输血知,C错误;由任何血型的人都可以给AB血型的人输血,知D正确.]
13. [抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,
所以P(A)=,P(B)=,P(A∩B)=,
所以P(A∪B)=P(A)+P(B)-P(A∩B)=.]
14.解:(1)从袋中任取一球,记“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为事件A,B,C,D,它们彼此互斥,
则P(A)=,P(B∪C)=P(B)+P(C)=,
P(C∪D)=P(C)+P(D)=,P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-.
则联立
解得P(B)=,P(C)=,P(D)=,
故得到黑球、黄球、绿球的概率分别为.
(2)事件“得到红球或绿球”可表示为事件A∪D,由(1)及互斥事件的概率加法公式得P(A∪D)=P(A)+P(D)=,
故得到的不是红球也不是绿球的概率
P=1-P(A∪D)=1-.
15.解:从五个小球中一次任意摸出两个小球,不同的结果有(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共10种.记两个小球的编号之和为x.
(1)记“中二等奖”为事件A.由题意可知,事件A包括两个互斥事件:x=5,x=6.
事件x=5的取法有2种,即(1,4),(2,3),故P(x=5)=;
事件x=6的取法有1种,即(2,4),故P(x=6)=.
所以P(A)=P(x=5)+P(x=6)=.
(2)记“不中奖”为事件B,则“中奖”为事件包括三个互斥事件:中一等奖(x=7),中二等奖(事件A),中三等奖(x=4).事件x=7的取法有1种,即(3,4),故P(x=7)=;
事件x=4的取法有(0,4),(1,3),共2种,
故P(x=4)=.由(1)可知,P(A)=.
所以P=P(x=7)+P(x=4)+P(A)=.
所以不中奖的概率P(B)=1-.课时分层作业(四十八) 事件的相互独立性
一、选择题
1.从应届高中生中选飞行员,已知这批学生体形合格的概率为,视力合格的概率为,其他综合标准合格的概率为,从中任选一学生,则三项均合格的概率为(假设三项标准互不影响)(  )
A.  B.  C.  D.
2.一件产品要经过2道独立的加工程序,第一道工序的次品率为a,第二道工序的次品率为b,则产品的正品率为(  )
A.1-a-b
B.1-ab
C.(1-a)(1-b)
D.1-(1-a)(1-b)
3.(2021·新高考Ⅰ卷)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则(  )
A.甲与丙相互独立  B.甲与丁相互独立
C.乙与丙相互独立  D.丙与丁相互独立
4.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别是,则汽车在这三处因遇红灯而停车一次的概率为(  )
A. B. C. D.
5.(多选)从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋中各摸出一个球,下列结论正确的是(  )
A.2个球都是红球的概率为
B.2个球不都是红球的概率为
C.至少有1个红球的概率为
D.2个球中恰有1个红球的概率为
二、填空题
6.有甲、乙两批种子,发芽率分别为0.8和0.9.在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.
7.设某批电子手表的正品率为,次品率为,现对该批电子手表进行检测,每次抽取一个电子手表,假设每次检测相互独立,则第3次首次检测到次品的概率为________.
8.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者,则乙连胜四局的概率为________.
三、解答题
9.计算机考试分理论考试与实际操作考试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书.
甲、乙、丙三人在理论考试中“合格”的概率依次为,在实际操作考试中“合格”的概率依次为,甲、乙、丙每部分考试是否合格互不影响,且三人两部分考试结果也互不影响.
(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性更大?
(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.
10.若P(AB)=,P=,P(B)=,则下列关于事件A与B关系的判断,正确的是(  )
A.事件A与B互斥
B.事件A与B相互对立
C.事件A与B相互独立
D.事件A与B互斥且相互独立
11.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率都是,且是否闭合是相互独立的,则灯亮的概率是(  )
A. B. C. D.
12.(多选)甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为,乙队获胜的概率为.若前两局中乙队以2∶0领先,则下列结论正确的是(  )
A.甲队获胜的概率为
B.乙队以3∶0获胜的概率为
C.乙队以3∶1获胜的概率为
D.乙队以3∶2获胜的概率为
13.荷花池中,有一只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且沿逆时针方向跳的概率是沿顺时针方向跳的概率的2倍,如图所示.假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是________.
14.在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.
(1)求甲队获第一名且丙队获第二名的概率;
(2)求在该次比赛中甲队至少得3分的概率.
15.如图所示,用A,B,C,D四种不同的元件分别连接成两个系统M,N.当元件A,B都正常工作或元件C正常工作或元件D正常工作时,系统M正常工作;当元件A,B都正常工作或元件B,D都正常工作或元件C正常工作时,系统N正常工作.已知A,B,C,D四种元件正常工作的概率分别为0.5,0.9,0.7,0.8,且各元件是否正常工作是彼此独立的.试从能否正常工作的角度判断两个系统中哪一个的连接方式更为合理.
课时分层作业(四十八) 事件的相互独立性
1.B [由题意知三项标准互不影响,∴P=.]
2.C [因为2道工序相互独立,所以产品的正品率为(1-a)·(1-b).]
3.B [事件甲发生的概率P(甲)=,事件乙发生的概率P(乙)=,事件丙发生的概率P(丙)=,事件丁发生的概率P(丁)=.事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件甲与事件丁同时发生的概率为,P(甲丁)=P(甲)P(丁),故B正确;事件乙与事件丙同时发生的概率为,P(乙丙)≠P(乙)P(丙),故C错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.故选B.]
4.D [设汽车分别在甲、乙、丙三处通行为事件A,B,C,则P(A)=,P(B)=,P(C)=.
停车一次即为事件,
故概率为P=.]
5.ACD [设“从甲袋中摸出一个红球”为事件A1,“从乙袋中摸出一个红球”为事件A2,则P(A1)=,P(A2)=,且A1,A2相互独立.2个球都是红球为A1A2,其概率为,A正确;“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为,B错误;2个球中至少有1个红球的概率为1-PP=1-,C正确; 2个球中恰有1个红球的概率为,D正确.故选ACD.]
6.0.26 [所求概率P=0.8×0.1+0.2×0.9=0.26.]
7. [因为第3次首次检测到次品,所以第1次和第2次检测到的都是正品,第3次检测到的是次品,所以第3次首次检测到次品的概率为.]
8.0.09 [乙连胜四局,即乙先胜甲,然后胜丙,接着再胜甲,最后再胜丙,∴概率P=(1-0.4)×0.5×(1-0.4)×0.5=0.09.]
9.解:(1)记事件A=“甲获得合格证书”,事件B=“乙获得合格证书”,事件C=“丙获得合格证书”,则P(A)=,P(B)=,P(C)=.
因为P(C)>P(B)>P(A),所以丙获得合格证书的可能性更大.
(2)设事件D=“三人考试后恰有两人获得合格证书”,则
P(D)=P+P+P=,
即甲、乙、丙三人进行理论与实际操作两项考试后,恰有两人获得合格证书的概率为.
10.C [因为P(A)=1-P=1-,
而P(B)=,所以P(A)P(B)=.
又因为P(AB)=,所以P(AB)=P(A)P(B),
所以事件A与B相互独立.]
11.A [设事件G=“C闭合”,事件H=“D闭合”,事件T=“A与B中至少有一个不闭合”,事件R=“E与F中至少有一个不闭合”,则P(G)=P(H)=,P(T)=P(R)=1-,所以灯亮的概率P=1-P(T)P(R)PP=.]
12.AB [对于A,在乙队以2∶0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜,所以甲队获胜的概率为P1=,故A正确;
对于B,乙队以3∶0获胜,即第三局乙获胜,概率为,故B正确;
对于C,乙队以3∶1获胜,即第三局甲获胜,第四局乙获胜,概率为,故C错误;
对于D,若乙队以3∶2获胜,则第五局为乙队取胜,第三、四局乙队输,所以乙队以3∶2获胜的概率为,故D错误.]
13. [由题意知,青蛙沿逆时针方向跳的概率是,沿顺时针方向跳的概率是.青蛙跳三次要回到A叶上只有两条途径:第一条,按A→B→C→A,此时停在A叶上的概率P1=;第二条,按A→C→B→A,此时停在A叶上的概率P2=.
所以跳三次之后停在A叶上的概率P=P1+P2=.]
14.解:(1)设甲队获第一名且丙队获第二名为事件A,则P(A)=.
(2)甲队至少得3分有两种情况:两场只胜一场;两场都胜.设事件B为“甲两场只胜一场”,设事件C为“甲两场都胜”,则事件“甲队至少得3分”为B∪C,
则P(B∪C)=P(B)+P(C)=.
15.解:由题意知,元件A正常工作的概率为p1=0.5,元件B正常工作的概率p2=0.9,元件C正常工作的概率p3=0.7,元件D正常工作的概率p4=0.8,
则系统M正常工作的概率为1-(1-p1p2)(1-p3)(1-p4)=1-(1-0.5×0.9)×(1-0.7)×(1-0.8)=1-0.033=0.967,系统N正常工作的概率为1-{1-[1-(1-p1)(1-p4)]·p2}·(1-p3)=1-[1-(1-0.5×0.2)×0.9]×0.3=1-0.057=0.943.
因为0.967>0.943,所以系统M的连接方式更为合理.课时分层作业(四十九) 频率的稳定性
一、选择题
1.某地气象局预报说:明天本地降水的概率为80%,则下列解释正确的是(  )
A.明天本地有80%的区域降水
B.明天本地有80%的时间降水
C.明天本地降水的可能性是80%
D.以上说法均不正确
2.每道选择题有四个选项,其中只有一个选项是正确的.某次数学考试共有12道选择题,有位同学说:“每个选项正确的概率是,我每道题都选择第一个选项,则一定有3道题选择结果正确.”该同学的说法(  )
A.正确    B.错误
C.无法解释  D.以上均不正确
3.(多选)某篮球运动员在最近几次参加的比赛中的投篮情况如下表:
投篮次数 投中两分球的次数 投中三分球的次数
100 55 18
记该篮球运动员在一次投篮中,投中两分球为事件A,投中三分球为事件B,没投中为事件C,用频率估计概率的方法,得到的下述结论中,正确的是(  )
A.P=0.55   B.P=0.18
C.P=0.27   D.P=0.55
二、填空题
4.设某厂产品的次品率为2%,估算该厂8 000件产品中合格品的件数可能为________件.
5.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000辆汽车的数据,时间是从某年的5月1日到下一年的4月30日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似是________.
三、解答题
6.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
顾客人数 甲 乙 丙 丁
100 √ × √ √
217 × √ × √
200 √ √ √ ×
300 √ × √ ×
85 √ × × ×
98 × √ × ×
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
7.某市交警部门在调查一起交通事故过程中,所有的目击证人都指证肇事车是一辆A款出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆A款出租车,3 000辆B款出租车,乙公司有3 000辆A款出租车,100辆B款出租车,交警部门应先调查哪个公司的车辆较合理(  )
A.甲公司    B.乙公司
C.甲或乙公司均可  D.以上都对
8.(多选)某机构要调查某小区居民生活垃圾的投放情况(该小区居民的生活垃圾以厨余垃圾、可回收物、其他垃圾为主),随机抽取了该小区“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱这三类垃圾箱,总计1 000千克的生活垃圾,数据(单位:千克)统计如下:
类别 “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱
厨余垃圾的投放质量 400 200 100
可回收物的投放质量 30 140 30
其他垃圾的投放质量 20 20 60
根据样本数据估计该小区居民生活垃圾的投放情况,下列结论正确的是(  )
A.“厨余垃圾”投放正确的概率约为
B.“可回收物”投放错误的概率约为
C.该小区这三类垃圾中,“厨余垃圾”投放正确的概率最低
D.该小区这三类垃圾中,“其他垃圾”投放错误的概率最高
9.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 0 1 2 3 4 ≥5
保费 0.85a a 1.25a 1.5a 1.75a 2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 0 1 2 3 4 ≥5
频数 60 50 30 30 20 10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
10.有A,B两种乒乓球,A种乒乓球的次品率是1%,B种乒乓球的次品率是5%.
(1)甲同学买的是A种乒乓球,乙同学买的是B种乒乓球,但甲买到的是次品,乙买到的是合格品,从概率的角度如何解释?
(2)如果你想买到合格品,应选择购买哪种乒乓球?
课时分层作业(四十九) 频率的稳定性
1.C [选项A,B显然不正确,因为明天本地降水的概率为80%不是说有80%的区域降水,也不是说有80%的时间降水,而是指降水的可能性是80%.故选C.]
2.B [解每一道选择题都可看成一次试验,每次试验的结果都是随机的,经过大量的试验其结果呈现出一定的规律,即随机选取一个选项选择正确的概率是.12道选择题做对3道题的可能性比较大,但并不能保证一定做对3道题,也有可能都选错,因此该同学的说法错误.]
3.ABC [依题意,P(A)==0.55,P(B)==0.18,显然事件A,B互斥,P(C)=1-P(A+B)=1-P(A)-P(B)=0.27,事件B,C互斥,则P(B+C)=P(B)+P(C)=0.45,于是得选项A,B,C都正确,选项D错误.
故选ABC.]
4.7 840 [次品率为2%,故次品约8 000×2%=160(件),故合格品的件数可能为7 840.]
5.0.03 [在一年内挡风玻璃破碎的频率为=0.03,用频率来估计挡风玻璃破碎的概率,故概率近似为0.03.]
6.解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.
(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.
所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.
(3)顾客同时购买甲和乙的概率可以估计为=0.2,
顾客同时购买甲和丙的概率可以估计为=0.6,
顾客同时购买甲和丁的概率可以估计为=0.1.
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
7.B [由于甲公司A款的比例为,乙公司A款的比例为,
可知肇事车在乙公司的可能性大些.]
8.AC [A选项,“厨余垃圾”共有400+200+100=700 kg,其中400 kg投放正确,概率为,所以A选项说法正确;
B选项,“可回收物”共有30+140+30=200 kg,其中60kg投放错误,概率为,所以B选项说法错误;
C选项,“厨余垃圾”、“可回收物”、“其他垃圾”投放正确的概率依次为最小,所以C选项说法正确;
D选项,“厨余垃圾”、“可回收物”、“其他垃圾”投放错误的概率依次为最大,所以D选项说法错误.故选AC.]
9.解:(1)事件A发生当且仅当一年内出险次数小于2.
由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4.
由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,
故P(B)的估计值为0.3.
(3)由所给数据得
保费 0.85a a 1.25a 1.5a 1.75a 2a
频率 0.30 0.25 0.15 0.15 0.10 0.05
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
10.解:(1)因为A种乒乓球的次品率是1%,所以任选一个A种乒乓球是合格品的概率是99%.同理,任选一个B种乒乓球是合格品的概率是95%.
因为99%>95%,所以“买一个A种乒乓球,买到的是合格品”的可能性比“买一个B种乒乓球,买到的是合格品”的可能性大.但并不表示“买一个A种乒乓球,买到的是合格品”一定发生.乙买一个B种乒乓球,买到的是合格品,而甲买一个A种乒乓球,买到的却是次品,即可能性较小的事件发生了,而可能性较大的事件却没有发生,这正是随机事件的不确定性的体现.
(2)因为任意选取一个A种乒乓球是合格品的可能性为99%,所以如果做大量重复买一个A种乒乓球的试验,“买到的是合格品”的频率会稳定在0.99附近.同理,做大量重复买一个B种乒乓球的试验,“买到的是合格品”的频率会稳定在0.95附近.因此若希望买到的是合格品,则应选择购买A种乒乓球.课时分层作业(五十) 随机模拟
一、选择题
1.(多选)下列能产生随机数的是(  )
A.抛掷骰子试验
B.抛硬币
C.计算器
D.正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体
2.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为(  )
A.   B.   C.   D.
3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
93 28 12 45 85 69 68 34 31 25
73 93 02 75 56 48 87 30 11 35
据此估计,该运动员两次掷镖恰有一次正中靶心的概率为(  )
A.0.50   B.0.45 
C.0.40   D.0.35
二、填空题
4.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是________.
5.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:
034 743 738 636 964 736 614 698 637 162
332 616 804 560 111 410 959 774 246 762
428 114 572 042 533 237 322 707 360 751
据此估计乙获胜的概率约为________.(保留3位有效数字)
三、解答题
6.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,若该篮球爱好者连续投篮4次,求至少投中3次的概率.用随机模拟的方法估计上述概率.
7.抛掷两颗相同的骰子,用随机模拟方法估计“上面点数的和是6的倍数”的概率时,用1,2,3,4,5,6分别表示上面的点数是1,2,3,4,5,6,用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足上面点数的和是6的倍数:________(选填“是”或“否”).
8.在一个大转盘上,盘面被均匀地分成12份,分别写有1~12这12个数字,其中2,4,6,8,10,12这6个区域对应的奖品是文具盒,而1,3,5,7,9,11这6个区域对应的奖品是书包.游戏规则是转盘转动后指针停在哪一格,则继续向前前进相应的格数.例如:你转动转盘停止后,指针落在4所在区域,则还要往前前进4格,到标有8的区域,此时8区域对应的奖品就是你的,依此类推.请问:小明在玩这个游戏时,得到的奖品是书包的概率是________.
9.某市为了了解一周内学生的线上学习情况,从该市抽取了1 000名学生进行调查,根据所得信息制作了如图所示的频率分布直方图.
(1)为了估计从该市任意抽取的3名同学中恰有2人线上学习时间在[200,300)的概率P,特设计如下随机模拟试验:先由计算器产生0到9之间取整数值的随机数,依次用0,1,2,3,…,9的前若干个数字表示线上学习时间在[200,300)内,剩余的数字表示线上学习时间不在[200,300)内;再以每三个随机数为一组,代表线上学习的情况.
假设用上述随机模拟方法产生了如下30组随机数:
907 966 191 925 271 569 812 458 932
683 431 257 393 027 556 438 873 730
113 669 206 232 433 474 537 679 138
598 602 231
请根据这些随机数估计概率P;
(2)为了进一步进行调查,用比例分配的分层随机抽样方法从这1 000名学生中抽取20名学生,在抽取的20人中,再从线上学习时间在[350,450)的同学中任意选择2名,求这2名同学来自同一组的概率.
课时分层作业(五十) 随机模拟
1.ABC [D项中,出现2的概率为,出现1,3,4,5的概率均是,则D项不能产生随机数.]
2.A [抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为.]
3.A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的一个.它们分别是93,28,45,25,73,93,02,48,30,35,共10个.
因此估计所求的概率为=0.50.]
4. [[a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.]
5.0.367 [产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707,共11个.所以采用三局两胜制,乙获胜的概率约为≈0.367.]
6.解:利用计算机或计算器产生0到9之间取整数值的随机数,用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,因为投篮4次,所以每4个随机数作为1组.例如5727,7895,0123,…,4560,4581,4698,共100组这样的随机数,若所有数组中没有7,8,9,0或只有7,8,9,0中的一个数的数组的个数为n,则至少投中3次的概率近似值为.
7.否 [16表示第一颗骰子向上的点数是1,第二颗骰子向上的点数是6,则上面点数的和是1+6=7,不表示和是6的倍数.]
8.0 [∵转盘停止后,指针所在区域再前进相应格数后所在位置均为标为偶数的区域,
又∵得到书包对应的区域均标为奇数,
∴得到的奖品为书包的概率为0.]
9.解:(1)由频率分布直方图可知,线上学习时间在[200,300)的频率为(0.002+0.006)×50=0.4,所以可以用数字0,1,2,3表示线上学习时间在[200,300)内,数字4,5,6,7,8,9表示线上学习时间不在[200,300)内.观察题中随机数组可得,3名同学中恰有2人线上学习时间在[200,300)的有191,271,812,932,431,393,027,730,206,433,138,602,共12个.用频率估计概率可得,该市3名同学中恰有2人线上学习时间在[200,300)的概率P==0.4.
(2)抽取的20人中,线上学习时间在[350,450)的同学有20×(0.003+0.002)×50=5(人),其中线上学习时间在[350,400)的同学有3名,设为A,B,C,线上学习时间在[400,450)的同学有2名,设为a,b,用(x,y)表示样本空间中的样本点,则从5名同学中任取2名的样本空间Ω={(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)},共10个样本点,用M表示“2名同学来自同一组”这一事件,则M={(A,B),(A,C),(B,C),(a,b)},共4个样本点,所以P(M)==0.4.