3.5探索与表达规律
教学目标:
1.通过观察、分析、总结等一系列过程,经历探索数量关系,运用符号表示规律,通过运算验证规律的过程。
2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
3.通过动手操作、观察、思考,体验数学活动是充满着探索性和创造性的过程;
4.通过交流合作,体验在解决问题的过程中与他人合作的重要性。
教学重点:学会探索数量关系,运用符号表示规律。
教学难点:学会从不同角度探索数量关系表示规律。
教学过程:
一、开门见山,引出课题:
小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
二、合作交流,探索规律:
活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形
⑴填写下表:
⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?
★注意引导学生概括“探索规律”的一般步骤:
寻找数量关系;
用代数式表示规律
验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?
活动二:探索具体情景下事物的规律
问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?
问题2.若按图2方式摆放桌子和椅子
⑴一张桌子可坐6人,2张桌子可坐 人。
⑵按照上图方式继续排列桌子,完成下表:
问题3.如果按图3的方式将桌子拼在一起
⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?
⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
活动三:探索图表的规律
下面是2000年八月份的日历:
⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?
⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?
⑶这个关系对任何一个月的日历都成立吗?为什么?
⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?
思考题:将一张长方形的纸对折,可得到一条 ( http: / / www.21cnjy.com )折痕。继续对折,对折时每次与上次的折痕保平行。连续6次后,可以得到几条折痕?如果对折10次呢?对折n次呢?
三、小结
其实在我们周围的生活中存在着许多很多的数学信息,
今天我们就利用数学知识发现了很多身边事物所存在的数学规律。希望同学们做生活的有心人,继续去探索周围生活中的数学规律。
四、作业:观察生活,编一道探索数学规律的题目。