平行四边形的性质教案
赣县江口中学 杨春霞
教学目标
知识与技能
理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
培养学生的推理论证能力和逻辑思维能力.
过程与方法
经历探索平行四边形性质的过程, 发展学生的探究意识和合情推理的能力。
情感态度与价值观
培养学生严谨的推理能力,和合作交流的习惯,体会平行四边形的实际应用价值。
重点
理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
难点
1、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
2、培养学生的推理论证能力和逻辑思维能力.
教 学 过 程
备 注
教学设计 与 师生互动
第一步:课堂引入
1.复习提问:
(1)什么样的四边形是平行四边形?
(2)平行四边形的性质:
①角:平行四边形的对角相等,邻角互补.
②边:平行四边形的对边相等.
第二步:探究新知:
【探究】:
请学生观察ABCD,并连接对角线AC、BD,交于点O.
其中OA和OC,OB和OD会相等吗?你能否用几何方法证明呢?
我们还能不能通过其他方法来证明?
【结论】:
(1)平行四边形是中心对称图形
(2)平行四边形的对角线互相平分.
(3)对角线把平行四边形分成的四部分面积相等
第二步:应用举例:
例(教材P86的例1)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算
解略(参看教材P86).
第三步:挑战练习
1、如图,在平行四边形ABCD中,AC与BD相交于点O,
(1)若AC=18cm,BD=24cm,则AO= , BO= .
又若AB=13厘米,则△COD的周长为 。
(2)若△AOB的周长为30cm, AB=12cm,则对角线AC与BD的和是 。
2、已知:如图,平行四边形ABCD的对角线AC,BD交于点O.过点O作直线EF,分别交AB,CD于点E,F。求证:OE=OF (图略)
变图引申:OE和OF是否还会相等?
3、一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的
当四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗?为什么?
第四步:小结
平行四边变形具有哪些性质?
第五步:学生鼓励评价
我学会了……
我掌握了……
我还不清楚的是……
我给自己的表现:
A.很棒、B.满意、C.加油
第六步:课后作业
必做题:教材练习题:P86T1、2;
自选题:必做题:教材练习题:P86T1、2;
自选题:1.请你利用中心对称图形设计一个图案.
2.请登陆江口中学教学资源网作业广角.
课后小结与反思:
课件16张PPT。平行四边形的性质⑵江口中学 杨春霞欢迎来到 平行四边形 的课堂例题回顾探究巩固回顾思考:◆什么是平行四边形?◆ 平行四边形的性质?两组对边分别平行的四边形
叫做平行四边形. 平行四边形的 对边平行且相等,对角相等,邻角互补.OABCD(C)(A)(B)(D)平行四边形的对角线互相平分下列图形是不是中心对称图形已知四边形ABCD是平行四边形,AB = 10cm,AD = 8cm,AC⊥BC,求BC、CD、AC、OA的长以及□ABCD的面积.解∵ 四边形ABCD是平行四边形
∴AB=CD=10, AD=BC=8
∵ AC⊥BC
∴ΔABC是直角三角形
∴ AC=
又OA=OC,
∴OA= 1/2 AC=3
∴S□ABCD=BC·AC=8×6=48
=例1108=6挑战闯关加油哦!闯关一闯关二闯关三如图,在平行四边行ABCD中,AC与BD相交于点O,
(1)若AC=18cm,BD=24cm,则AO= , BO= .又若AB=13厘米,则△COD的周长为 。(2)若△AOB的周长为30cm, AB=12cm,则对角线AC与BD的和是 。基础巩固关能力提升关智力比拼关 一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的
老二老大老四老三 当四个孩子看到时,争论不休,都认为
自己的地少,同学们,你认为老人这样分合
理吗?为什么呢? 平行四边形的性质关于边关于角关于对角线对边平行且相等邻角互补
对角相等对角线互相平分归纳与总结体会与分享我学会了……
我掌握了……
我还不清楚的是……
我给自己的表现:
A.很棒、B.满意、C.加油作业:必做题:教材练习题:P86T1、2;
自选题:1.请你利用中心对称图形设计一个图案.
2.请登陆江口中学教学资源网作业广角.再见!C请判断下列图中,OE=OF还成立么?2.已知: □ ABCD的对角线AC、BD相交于点
O,AC =16㎝,BD =12㎝,BC =10㎝,
则□ABCD 的周长是_______,
□ ABCD的面积是__________。 861010练一练
《平行四边形的性质》说课稿
尊敬的各位评委、老师:
大家好!
我是赣县江口中学数学教师—杨春霞,今天,我说课的内容是选自人教版新课标实验教材《数学》八年级下第十九章第一节第二课时《平行四边形的性质》.我设计的说课共分四大环节.
一、设计理念
《数学课程标准》指出:“新课程实施的基本点是促进学生全面、持续、和谐地发展.”而数学教学,则从学生已有的生活经验出发,创设问题情境,引导学生通过观察猜想、实验探究、合作交流,从而获取新知、形成技能、发展思维、学会学习.
二、教材分析
平行四边形的性质是平行线和三角形知识的应用和深化,是学习矩形、菱形、正方形的必备知识,是证明线段相等、角相等的重要依据.本课主要探究平行四边形对角线互相平分这一性质.我通过生动的多媒体演示让学生在教师的指导下自主探究学习,从而感受数学.
因此,通过本节课的学习,力争达到以下教学目标:
知识目标:掌握平行四边形对角线互相平分这一性质,并会用此性质进行有关的论证和计算.
能力目标:经历观察、猜想、实验、验证等数学活动,认识平行四边形的性质,发展学生演绎推理能力和发散思维能力,初步形成评价与反思的意识.
情感目标:培养学生勤于实践、勇于探索、合作交流的精神,增强学生学好数学的勇气和信心.
根据以上教学目标和学生已有的认知基础,我确定本节课的
教学重点:平行四边形的对角线互相平分这一性质的应用.
教学难点:对平行四边形的对角线互相平分这一性质的探究.
三、教学方法与手段
八年级学生几何学习正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,无论从知识结构,还是知识能力上都有所欠缺.因此我采用“创设情境—大胆猜想—实验探究—反思评价”的课堂活动模式,努力营造自主、合作、探究的学习氛围,利用多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验.
四、教学过程
(一)回顾思考
(1)什么样的四边形是平行四边形?
(2)平行四边形的性质?
[设计意图] 旧知复习主要是为新知学习服务
(二)深入探究
【探究】:
【探究】:
请学生观察ABCD,并连接对角线AC、BD,交于点O.
其中OA和OC,OB和OD会相等吗?你能否用几何方法证明呢?
我们还能不能通过其他方法来证明?
【结论】:
(1)平行四边形是中心对称图形
(2)平行四边形的对角线互相平分.
(3)对角线把平行四边形分成的四部分面积相等
学生活动:用几何方法证明对角线互相平分
【设计意图】通过教师教具和投影仪向学生展示平行四边形旋转,使学生在观察中探索到平行四边形的性质,解决了重点,突破了难点。
(三)例题详解
(投影显示)
如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD面积.
思路点拨:可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC =6,由于OA=OC,因此AO=3,求ABCD面积是48.
【设计意图】对于几何计算或证明,分析思路和方法是根本,通过本例,让学生学会如何分析,学会如何严格的书写突破用几何语言书写表达的难点
(四)挑战闯关
1、基础巩固关
如图,在平行四边形ABCD中,AC与BD
相交于点O,
(1)若AC=18cm,BD=24cm,则AO= , BO= .
又若AB=13厘米,则△COD的周长为 。
(2)若△AOB的周长为30cm, AB=12cm,则对角线AC与BD的和是 。
2、能力提升关
已知:如图,平行四边形ABCD的对角线AC,BD交于点O.过点O作直线EF,分别交AB,CD于点E,F。求证:OE=OF
3、智力比拼关
一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的
当四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗?为什么呢? (图略)
【设计意图】挑战闯关满足多层次学习的需要,使不同层次的学生都能得到不同的发展.
(五)小结
平行四边变形具有哪些性质?
(六)评价与鼓励
我学会了……
我掌握了……
我还不清楚的是……
我给自己的表现:
A.很棒、B.满意、C.加油
【设计意图】让学生谈谈通过本节课的学习对自己的评价与鼓励。教师有针对性的对各个层面的学生给予激励评价,特别对于平时表现不是很好的学生以及学习兴趣不高的学生这节课的表现给予肯定,激发他们的上进心和自信心。
(六)作业布置
必做题:教材练习题:P86T1、2;
自选题:1.请你利用中心对称图形设计一个图案.
2.请登陆江口中学教学资源网作业广角.
【设计意图】根据因材施教,面向全体的原则,分必做题和自选题,使每一个层面的学生都能得以巩固和提高,让每一个学生都能在原有的基础之上有所进步。
(七)板书设计
§19.1.1平行四边形的性质
一、平行四边形的性质探究 二、例题详解
三、挑战闯关 四、小结
板书设计力求做到条理清晰、重点突出.
以上是我对本节课的设计说明,如有不当之处,恳请各位评委、老师批评指正.
谢谢大家.
课件26张PPT。平行四边形的性质⑵江口中学 杨春霞说 课设计理念 教材分析 教学方法与手段 教学过程设计理念《数学课程标准》指出:“新课程实施的基本点是促进学生全面、持续、和谐地发展.”而数学教学,则从学生已有的生活经验出发,创设问题情境,引导学生通过观察猜想、实验探究、合作交流,从而获取新知、形成技能、发展思维、学会学习.本课的教学重点:平行四边形的对角线互相平分这一性质的探究和应用.
本课的教学难点:对平行四边形的对角线互相平分这一性质的探究. 教学方法与手段积 极 参 与 共 同 学 习采用“创设情境—大胆猜想—实验探究—反思评价”的课堂活动模式,努力营造自主、合作、探究的学习氛围,利用多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验.教学程序回顾思考:◆什么是平行四边形?◆ 平行四边形的性质?两组对边分别平行的四边形
叫做平行四边形. 平行四边形的 对边平行且相等,对角相等,邻角互补.OABCD(C)(A)(B)(D)平行四边形的对角线互相平分中 心 对 称 图 形例1已知四边形ABCD是平行四边形,AB = 10cm,AD = 8cm,AC⊥BC,求BC、CD、AC、OA的长以及□ABCD的面积.108解∵ 四边形ABCD是平行四边形
∴AB=CD=10, AD=BC=8
∵ AC⊥BC
∴ΔABC是直角三角形
∴ AC=
又OA=OC,
∴OA= AC=3
∴S□ABCD=BC·AC=8×6
==挑战闯关加油哦!闯关一闯关二闯关三小试基础关如图,在 ABCD中,AC与BD相交于点O,
(1)若AC=18cm,BD=24cm,则AO= , BO= .又若AB=13厘米,则△COD的周长为 。(2)若△AOB的周长为30cm, AB=12cm,则对角线AC与BD的和是 。能力提高关开放探究关 一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的
老二老大老四老三 当四个孩子看到时,争论不休,都认为
自己的地少,同学们,你认为老人这样分合
理吗?为什么呢? 平行四边形的性质关于边关于角关于对角线对边平行且相等邻角互补
对角相等对角线互相平分归纳与总结体会与分享我学会了……
我掌握了……
我还不清楚的是……
我给自己的表现:
A.很棒、B.满意、C.加油作业:必做题:教材练习题:P86 1、2;
自选题:1.请你利用中心对称图形设计一个图案.
2.请登陆江口中学教学资源网作业广角.板书设计谢 谢 指 导!C请判断下列图中,OE=OF还成立么?